• 제목/요약/키워드: Receptor-mediated

검색결과 1,295건 처리시간 0.023초

돼지 분만 시기에 조절에 관하여 III. 자궁 평활근의 운동성에 대한 Histamine의 영향 (Control of Parturition Time on Pig III. Effect of Histamine on Uterine smooth muscle motility)

  • 박상은;황보원;변유성;조광제
    • 한국동물위생학회지
    • /
    • 제18권2호
    • /
    • pp.177-181
    • /
    • 1995
  • The effects of histamine were investigated on the uterine smooth muscle motility in the pig. The results were summarized as fellows : 1. Histamine caused the contraction of the porcine uterine smooth muscle and the contractile responses increased between the concetration of histamine $10^{-8}$ and $10^{-5}$ M with a dose-dependent manner. 2. The contractile response Induced by histamine ($10^{-6}$ M) was completely blocked by pretrevatment with $H_1$-histaminergic receptor blocker, pyrilamine($10^{-6}$ M) 3. The contractile response induced by histamine($10^{-6}$ M) was increased by pretreatment with $H_2$-histaminergic receptor blocker, cimetidine($10^{-6}$ M) From these results, it was concluded that the effects of uterine smooth muscle by histamine were the contraction mediated by $H_1$-histaminergic receptor and the relaxation mediated by $H_2$-histaminergic receptor in pig.

  • PDF

Immobilization and Characterization of a Liposome-Mediated Reconstituted Nicotinic Acetylcholine Receptor

  • Suh, Jeong-Ihn;Palk, Bo-Hyun;Oh, Se-Zu;Suh, Jung-Hun;Cho, Key-Seung;Palk, Young-Ki
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.155-161
    • /
    • 1995
  • A nicotinic acetylcholine receptor (nAchR) isolated from the electric tissues of Torpedo californica has been reconstituted into a vesicle comprising a bifunctional azo-ligand (Bae 1) compound, and a liposome containing phospholipids and cholesterol (1 : 1, w/w). The liposome-mediated reconstituted receptor showed a concentration-dependent response to cholinergic drugs in a lithium ion flux assay. This liposome-mediated reconstituted nAchR was immobilized onto an electrode using various synthetic polymers which were tested for their response to the cholinergic ligands. The immobilized nAchR not only exhibited a linear response to a wide range of cholinergic ligand concentrations but also retained an operational stability which lasted for longer than 6 days. Thus, this result provides a basis for application of the immobilized nAchR-based biosensor in detecting cholinergic ligands in vitro.

  • PDF

Muscarine $M_2$ Receptor-mediated Presynaptic Inhibition of GABAergic Transmission in Rat Meynert Neurons

  • Jang, Il-Sung;Akaike, Norio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권2호
    • /
    • pp.63-70
    • /
    • 2002
  • Cholinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) by the activation of muscarine receptors was investigated in mechanically dissociated rat nucleus basalis of the Meynert neurons using the conventional whole-cell patch recording configuration. Muscarine $(10{\mu}M)$ reversibly and concentration-dependently decreased mIPSC frequency without affecting the current amplitude distribution. Muscarine action on GABAergic mIPSCs was completely blocked by $1{\mu}M$ methoctramine, a selective $M_2$ receptor antagonist, but not by $1{\mu}M$ pirenzepine, a selective $M_1$ receptor antagonist. NEM $(10{\mu}M),$ a G-protein uncoupler, attenuated the inhibitory action of muscarine on GABAergic mIPSC frequency. Muscarine still could decrease GABAergic mIPSC frequency even in the $Ca^{2+}-free$ external solution. However, the inhibitory action of muscarine on GABAergic mIPSCs was completely occluded in the presence of forskolin. The results suggest that muscarine acts presynaptically and reduces the probability of spontaneous GABA release, and that such muscarine-induced inhibitory action seems to be mediated by G-protein-coupled $M_2$ receptors, via the reduction of cAMP production. Accordingly, $M_2$ receptor-mediated disinhibition of nBM neurons might play one of important roles in the regulation of cholinergic outputs from nBM neurons as well as the excitability of nBM neurons themselves.

Bicuculline Methiodide (BMI) Induces Membrane Depolarization of The Trigeminal Subnucleus Caudalis Substantia Gelatinosa Neuron in Mice Via Non-$GABA_A$ Receptor-Mediated Action

  • Yin, Hua;Park, Seon-Ah;Choi, Soon-Jeong;Bhattarai, Janardhan P.;Park, Soo-Joung;Suh, Bong-Jik;Han, Seong-Kyu
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.217-221
    • /
    • 2008
  • Bicuculline is one of the most commonly used $GABA_A$ receptor antagonists in electrophysiological research. Because of its poor water solubility, bicuculline quaternary ammonium salts such as bicuculline methiodide (BMI) and bicuculline methbromide are preferred. However, a number of studies have shown that BMI has non-$GABA_A$ receptor-mediated effects. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is implicated in the processing of nociceptive signaling. In this study, we investigated whether BMI has non-GABA receptor-mediated activity in Vc SG neurons using a whole cell patch clamp technique. SG neurons were depolarized by application of BMI ($20{\mu}M$) using a high $Cl^-$ pipette solution. GABA ($30-100{\mu}M$) also induced membrane depolarization of SG neuron. Although BMI is known to be a $GABA_A$ receptor antagonist, GABA-induced membrane depolarization was enhanced by co-application with BMI. However, free base bicuculline (fBIC) and picrotoxin (PTX), a $GABA_A$ and $GABA_C$ receptor antagonist, blocked the GABA-induced response. Furthermore, BMI-induced membrane depolarization persisted in the presence of PTX or an antagonist cocktail consisting of tetrodotoxin ($Na^+$ channel blocker), AP-5 (NMDA receptor antagonist), CNQX (non-NMDA receptor antagonist), and strychnine (glycine receptor antagonist). Thus BMI induces membrane depolarization by directly acting on postsynaptic Vc SG neurons in a manner which is independent of $GABA_A$ receptors. These results suggest that other unknown mechanisms may be involved in BMI-induced membrane depolarization.

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells

  • Kim, Hangeun;Jung, Bong Jun;Jeong, Jihye;Chun, Honam;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1051-1058
    • /
    • 2014
  • Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.

IL-l/Toll-like Receptor Superfamily 신호전달에 관여하는 TRAF6 결합 Motif의 규명 (Identification of TRAF6-Binding Motif in IL-1/Toll-like Receptor Superfamily-Mediated Signal Transduction)

  • 임미정
    • 약학회지
    • /
    • 제47권3호
    • /
    • pp.180-183
    • /
    • 2003
  • Crystal structure of TRAF6 in complex with TRAF6-binding sites from CD40 was previously determined. The structure revealed a distinct TRAF6-binding groove of CD40, the key structural determinant of interaction. The structural information leads to a proposed TRAF6-binding motif. This allows the identification of TRAF6-binding sequences in the hIRAK protein, whose functional requirement in IL-1/Toll-like receptor superfamilies-mediated signal transduction is further demonstrated using site-directed mutagenesis. The mutational effects of hIRAK on the down-stream NF-kB signaling shows the importance of the TRAF6 interface for signaling by IL-1/Toll-like receptor superfamilies.

Effects of Individual Fatty Acids on Receptor-Mediated Binding, Internalization and Degradation of $[^{125}I]LDL$

  • Choue, Ryo-Won;Cho, Byung-Hee Simon
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 1997
  • The ability of Hep-G2 cells to process $[^{125}I]LDL$ under basal conditions was investigated. The receptor-binding and internalization of $[^{125}I]LDL$ increased with the time of incubation in a saturable manner. After 4 h of incubation, 31.4 ng of $[^{125}I]LDL$ was cell bound. The cells rapidly internalized $[^{125}I]LDL$ via specific, receptor-mediated endocytosis. The amount of internalized $[^{125}I]LDL$ reached a maximun of 96.7 ng at 2 h of incubation and remained constant for the next 2 h. The rate of degradation of internalized $[^{125}I]LDL$ proceeded in a linear manner over the entire 4 h of incubation after an initial lag period. The effects of individial fatty acids (C18:0. C18:1, C18:2. and C18:3), differing in their degree of unsaturation. on the receptor-binding, internalization and degradation of $[^{125}I]LDL$ were also investigated. Inclusion of 1.0 mM of each fatty acid into the culture medium significantly increased $[^{125}I]LDL$ metabolism in Hep-G2 cells. Among the fatty acids tested, stearic acid had the least effect on the receptor-binding activity. There were no significant differences among the unsaturated fatty acids in LDL-receptor binding. The effect of individual fatty acids on the $[^{125}I]LDL$ uptake was similar to that of the receptor-binding. showing a significantly lower effect with stearic acid. The amount of degraded material of internalized $[^{125}I]LDL$ was the lowest with stearic acid when it was compared with unsaturated fatty acids.

  • PDF

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

Health Promoting Effects of Lactoferrin from Milk

  • Shimizu, Hirohiko;Ando, Kunio;Hoshino, Tatsuo
    • Journal of Dairy Science and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.21-24
    • /
    • 2006
  • The ubiquitous presence of lactoferrin(LF) receptor in human as reported by the research group of Prof. Bo Lonnerdal, Univ. California (Suzuki, Y. A.,2001) encouraged us to search for the unknown physiological roles of Lf. Under the collaboration with Prof. Etsumori Harada, Tottori Univ., and his research group, we have found two novel biological activities of LF as the control of the lipid metabolism and the effect on the central nervous system. Relating to the lipid metabolism, LF could, in animal experiments, reduce triglyceride and total cholesterol both in blood and liver (Takeuchi, T et αl., 2003). LF increased plasms HDL-C and lowered LDL-C. In the central nervous system, LF showed anti-nociceptive activity mediated by ${\mu}$-opioid receptor in the rat spinal cord (Hayashida, K. et al., 2003). LF enhanced analgesic action of morphine synergistically via nitric oxide synthesis (Hayashida, K., et al., 2003) LF showed opioid-mediated suppressive effect on distress induced by maternal separation in rat pups (Takeuchi, T., et al., 2003).

  • PDF

The Chemokine SDF-1α Suppresses Fibronectin-mediated In Vitro Lymphocytes Adhesion

  • Ji, LiLi;Sheng, YuChen;Wang, ZhengTao
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.308-313
    • /
    • 2006
  • Stromal cell-derived factor (SDF-1) is a CXC chemokine that selectively activates the CXCR4 chemokine receptor. Fibronectin is an intracellular matrix component that binds integrin and mediates cell-matrix adhesion. Activation of the integrin receptor can occur in two ways: by ligand binding (outside-in signaling), and in response to intracellular events (inside-out signaling). In the current study we showed that SDF-$1{\alpha}$ inhibited adhesion of T lymphocyte Jurkat cells resulting from binding high concentrations of fibronectin as well as that of THP-1 monocytes. The effect of SDF-$1{\alpha}$ on fibronectin-mediated adhesion was partly reversed by the CXCR4 receptor antagonist T140. Our results suggest that an SDF-1/CXCR4 signal pathway modulates fibronectin-mediated lymphocytes adhesion.