Immobilization and Characterization of a Liposome-Mediated Reconstituted Nicotinic Acetylcholine Receptor

  • Suh, Jeong-Ihn (Department of Biochemistry and Bioproducts Research Center, Yonsei University) ;
  • Palk, Bo-Hyun (Department of Biochemistry and Bioproducts Research Center, Yonsei University) ;
  • Oh, Se-Zu (Department of Chemistry, Seoul National University) ;
  • Suh, Jung-Hun (Department of Chemistry, Seoul National University) ;
  • Cho, Key-Seung (Department of Biochemistry, Hanyang University) ;
  • Palk, Young-Ki (Department of Biochemistry and Bioproducts Research Center, Yonsei University)
  • Received : 1994.10.19
  • Published : 1995.03.31

Abstract

A nicotinic acetylcholine receptor (nAchR) isolated from the electric tissues of Torpedo californica has been reconstituted into a vesicle comprising a bifunctional azo-ligand (Bae 1) compound, and a liposome containing phospholipids and cholesterol (1 : 1, w/w). The liposome-mediated reconstituted receptor showed a concentration-dependent response to cholinergic drugs in a lithium ion flux assay. This liposome-mediated reconstituted nAchR was immobilized onto an electrode using various synthetic polymers which were tested for their response to the cholinergic ligands. The immobilized nAchR not only exhibited a linear response to a wide range of cholinergic ligand concentrations but also retained an operational stability which lasted for longer than 6 days. Thus, this result provides a basis for application of the immobilized nAchR-based biosensor in detecting cholinergic ligands in vitro.

Keywords

References

  1. Mol. Pharmacol. v.12 Colquhoun, D.;Rang, H.P.
  2. Annu. Rev. Biochem. v.51 Conti-Tranconi, B.M.;Raftery, M.A. https://doi.org/10.1146/annurev.bi.51.070182.002423
  3. Anal. Lett. v.21 Eldefrawi, M.E.;Serby, S.M.;Andreou, A.G.;Monsour, N.A.;Annau, Z.;Blum, N.A.;Valdes, J.J. https://doi.org/10.1080/00032718808066519
  4. Arch. Biochem. Biophys. v.159 Eldefrawi, M.E.;Eldefrawi, A.T. https://doi.org/10.1016/0003-9861(73)90462-1
  5. FEBS Lett. v.28 Franklin, G.I.;Potter, L.T. https://doi.org/10.1016/0014-5793(72)80687-2
  6. Methods Enzymol. v.135 Fukui, S.;Sonomoto, K.;Tanaka, A.;Moshach, K.(ed.)
  7. Anal. Lett. v.20 Gotoh, M.;Tamiya, E.;Momoi, M.;Kagawa, Y.;Karube, I. https://doi.org/10.1080/00032718708062935
  8. FEBS Lett. v.108 Hugamir, R.A.;Shell, M.A.;Racker, E. https://doi.org/10.1016/0014-5793(79)81199-0
  9. Biophys. J. v.37 Kristler, J.;Stroud, R.M.;Klymkowsky, M.W.;Lalancette, R.A.;Fairclough, R.H. https://doi.org/10.1016/S0006-3495(82)84685-7
  10. J. Biol. Chem. v.193 Lowry, O.H.;Rosenbrough, N.J.;Farr, A.L.;Randall, R.J.
  11. Proc. Natl. Acad. Sci. USA v.77 Nelson, N.;Anholt, R.;Lindstrom, J.;Montal, M. https://doi.org/10.1073/pnas.77.5.3057
  12. Annu. Rev. Pharmacol. v.12 O'Brien, R.D.;Eldefrawi, M.E.;Eldefrawi, A.T. https://doi.org/10.1146/annurev.pa.12.040172.000315
  13. Science v.208 Raftery, M.A.;Hunkapiller, M.W.;Strader, C.D.;Hood, L.E. https://doi.org/10.1126/science.7384786
  14. Anal. Biochem. v.182 Rogers, K.R.;Valdes, J.J.;Eldefrawi, M.E.
  15. Biosensors and Bioelectrnics v.6 Rogers, K.R.;Valdes, J.J.;Eldefrawi, M.E. https://doi.org/10.1016/0956-5663(91)85001-D
  16. Biochemistry v.31 Schurholtz, T.;Kehne, J.;Gieselmann, A.;Neumann
  17. Annu. Rev. Cell Biol. v.1 Stroud, R.M.;Finer-Moore, J. https://doi.org/10.1146/annurev.cb.01.110185.001533
  18. J. Am. Chem. Soc. Suh, J.H.;Shim, H.B.
  19. Anal. Chim. Acta v.213 Tayler, R.F.;Marenchic, I.G.;Cook, E.J. https://doi.org/10.1016/S0003-2670(00)81347-1
  20. Anal. Chem. v.58 Tor, R.;Freeman, A. https://doi.org/10.1021/ac00297a013
  21. Biochemistry v.17 Witzemann, V.;Raftery, M.