Purification and Reaction Mechanism of Rat Brain Succinic Semialdehyde Dehydrogenase

  • Kim, Kyu-Tae (Department of Biochemistry, College of Science, Yonsei University) ;
  • Joo, Chung-No (Department of Biochemistry, College of Science, Yonsei University)
  • Received : 1994.10.21
  • Published : 1995.03.31

Abstract

Rat brain succinic semialdehyde dehydrogenase (EC 1.2.1.24 SSADH) activity was detected in mitochondrial, cytosolic and microsomal fractions. Brain mitochondrial soluble SSADH was purified by ammonium sulfate precipitation, DEAE Sephacel, and 5'-AMP Sepharose 4B affinity chromatography. The purified enzyme was shown to consist of four identical subunits, and the molecular weight of a subunit was 55 kD. The $K_m$ for short chain aliphatic aldehydes and aromatic aldehydes were at the $10^{-3}M$ level but that for succinic semialdehyde was 2.2 ${\mu}M$. Either $NAD^+$ or $NADP^+$ can be used as a cofactor but the affinity for $NAD^+$ was 10 times higher than that for $NADP^+$. The brain cytosolic SSADH was also purified by ammonium sulfate precipitation, DEAE Sephacel, Blue Sepharose CL-6B and 5'-AMP Sepharose 4B affinity chromatography and its Km for short chain aliphatic aldehydes was at the $10^{-3}$ level but that for succinic semialdehyde was 3.3 ${\mu}M$. $NAD^+$ can be used as a cofactor for this enzyme. We suppose that both enzyme might participate in the oxidation of succinic semialdehyde, which is produced during GABA metabolism. The activity of both cytosolic and mitochondrial SSADH was markedly inhibited when the concentration of succinic semialdehyde was high. The reciprocal plot pattern of product inhibition and initial velocity indicated a sequential ordered mechanism for mitochondrial matrix SSADH. Chemical modification data suggested that amino acid residues such as cysteine, serine and lysine might participate in the SSADH reaction.

Keywords

References

  1. Biochemistry v.22 Blackwell, L.F.;Bennett, A.F.;Buckley, P.D. https://doi.org/10.1021/bi00285a011
  2. J. Biol. Chem. v.246 Bradbury, S.L.;Jakoby, W.B.
  3. J. Biol. Chem. v.254 Chruchich, J.;Blaner, W.S.
  4. Biochim. Biophys. Acta. v.67 Cleland, W.W. https://doi.org/10.1016/0926-6569(63)90211-6
  5. The Enzymes v.2 Cleland, W.W.;Boyer, P.D.(ed.)
  6. J. Neurochem. v.41 Danh, H.D.;Benedetti, M.S.;Dostert, P. https://doi.org/10.1111/j.1471-4159.1983.tb04786.x
  7. Biochem. J. v.24 Dickinson, F.M.;Haywood, G.W.
  8. Eur. J. Biochem. v.22 Duncan, R.J.S.;Tipton, K.F. https://doi.org/10.1111/j.1432-1033.1971.tb01539.x
  9. Eur. J. Biochem. v.22 Duncan, R.J.S.;Tipton, K.F. https://doi.org/10.1111/j.1432-1033.1971.tb01574.x
  10. Biochem. J. v.183 Duncan, R.J.S. https://doi.org/10.1042/bj1830459
  11. J. Biol. Chem. v.241 Erwin, V.G.;Deitrich, R.A.
  12. J. Biol. Chem. v.247 Feldman, R.I.;Weiner, H.
  13. J. Pharmacol. Exp. Ther. v.224 Hjelle, J.T.;Pertersen, D.R.;Hjelle, J.J.
  14. Korean Biochem. J. v.24 Joo, C.N.;Kim, H.K.
  15. Biochim. Biophys. Acta. v.131 Kammeraat, C.;Veldstra, H.
  16. Federation Proc. v.25 Kanjenvk, K.;Schwartz, S.
  17. J. Nerochem. v.36 Koivula, T.;Tumer, A.J.;Koivusalo, M. https://doi.org/10.1111/j.1471-4159.1981.tb10812.x
  18. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  19. J. Biol. Chem. v.193 Lowry, O.M.;Rosenburogh, N.J.;Foor, A.L.;Randall, R.J.
  20. J. Neurochem. v.12 Pitts, F.N.;Quick, C. https://doi.org/10.1111/j.1471-4159.1965.tb10275.x
  21. Eur. J. Biochem. v.117 Rivett, A.J.;Tipton, K.F.
  22. Arch. Biochem. Biophys v.266 Ryzlak, M.T.;Pietruszko, R. https://doi.org/10.1016/0003-9861(88)90270-6
  23. J. Biol. Chem. v.250 Sidhu, R.S.;Blair, A.H.
  24. Eur. J. Biochem. v.35 Sims, K.L.;Davis, G.A. https://doi.org/10.1111/j.1432-1033.1973.tb02858.x
  25. J. Biol. Chem. v.255 Takahashi, K.;Weiner, H.
  26. J. Physiol. v.177 Takeuchi, A.;Takeuchi, N. https://doi.org/10.1113/jphysiol.1965.sp007588
  27. Biochem. J. v.215 Ting, H.H.;Crabble, M.J.C. https://doi.org/10.1042/bj2150351
  28. Biochem. J. v.135 Tottmar, S.O.C.;Petersson, H.;Kiessling, K.H. https://doi.org/10.1042/bj1350577a
  29. J. Neurochem. v.42 Weiner, H.;Ardelt, B. https://doi.org/10.1111/j.1471-4159.1984.tb09705.x