• Title/Summary/Keyword: Receptor complex

Search Result 380, Processing Time 0.025 seconds

Identification of the Fur-Binding Site in Regulatory Region of the Vulnibactin-Receptor Gene in Vibrio vulnificus

  • Lee, Hyun-Jung;Lee, Kyu-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.46-49
    • /
    • 2012
  • The Vibrio vulnificus vuuA gene, of which expression is repressed by a complex of iron and ferric uptake regulator (Fur), was characterized to localize the Fur-binding site in its upstream regulatory region. In silico analysis suggested the presence of two possible Fur-binding sites; one is a classical Fur-box and the other is a previously reported distinct Fur-binding site. Site-directed mutagenesis and DNase I protection assays revealed the binding site for the iron-Fur complex, which includes an extended inverted repeat containing a homologous sequence to the classical Fur-box.

천연물로부터의 Aromatase inhibitors

  • 정혜진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1999.04a
    • /
    • pp.5-8
    • /
    • 1999
  • 여성의 breast cancer의 1/3 의 경우가 hormone-dependent에 의한 것이다. 따라서 그 치료의 접근 방법으로써 estrogen receptor에 작용하거나, receptor-mediated gene trenscription을 저해하는 antiestrogen을 사용하는 것이 있다. Estrogen은 microsomal cytochrome P-450 enzyme complex system에 의해 androgen으로부터 생합성되는 hormone이며, estrogen product는 steroid product의 biosynthetic sequence의 마지막 단계에서 생산되고, aromatase는 이에 관여하는 enzyme으로써, aromatase를 선택적으로 저해하는 경우에 다른 steroid의 생산에 영향을 미치지 않고 estrogen 생산을 감소 시킬 수 있다. 이러한 관점에서, aromatase를 선택적으로 저해하는 것은 hormone-dependent breast cancer를 완화시킬 수 있는 가능성을 가진 cancer chernopreventive agents의 새로운 방법이라 할 수 있다.

  • PDF

Mutations of Constitutive Activation and Mutations That Impair Signal Transduction Modulate the Agonist-stimulated Internalization of the Lutropin/choriogonadotropin Receptor

  • Park, J.J.;Kim, M.S.;Lee, Y.Y.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • The lutropin/choriogonadotropin receptor (LHR) is a member of the rhodopsin-like subfamily of G protein coupled receptor (GPCRs), that has been shown to mediate the internalization of its two naturally occurring agonist, lutropin and choriogonadotropin (CG). The clustered agonist-receptor complex is internalized by a dynamin-dependent pathway and traverses the endosomal compartment without agonist dissociation Dissociation of the agonist-receptor complex occurs in the lysosomes, where both the agonist and receptor are degrade. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty (FMPP). A FMPP is a form of sexual precocious puberty in boys in which testosterone levels are elevated independent of changes in luteinizing hormone-releasing hormone and serum luteinizing hormone levels, We have now analyzed two naturally occurring, constitutively active mutants of the human LHR. These mutations were introduced into the rat LHR (rLHR) and are designated L435R and D556Y. Cells expressing rLHR-D556Y bind human choriogonadotropin (hCG) with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. Cells expressing rLHR-L435R also bind hCG with normal affinity, exhibit a 47-fold increase in basal cAMP, and do not respond to hCG with a further increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17- fold, respectively We conclude that the state of activation of the rLHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing rLHR-L435R is due to the fast rate of internalization of the bound hCG. The finding that membranes expressing rLHR-L435R respond to hCG with an increase in adenylyl cyclase activity supports this suggestion. Autonomous Leydig cell activity in FMPP is caused by a constitutively activating LH/CGR.

  • PDF

Modulation of Ligand Binding to the GABA-benzodiazepine Receptor Complex by Gastrodia elata Blume (천마의 GABA-benzodiazepine 수용체 복합체에 대한 조절작용)

  • Ha, Jeoung-Hee;Lee, Dong-Ung;Eah, Kyung-Yoon;Hah, Jung-Sang;Kim, Hyun-Ju;Yong, Chul-Soon;Huh, Keon
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.325-330
    • /
    • 1997
  • Methanol extract of G. elata inhibited the binding of [/sup 3/H]Rol5-1788, a selective benzodiazepine receptor antagonest, to benzodiazepine receptor of rat cortices. Saturation experiments followed by Scatchard analysis of the results showed that the inhibition of [sub 3/H]Ro15-1788 binding by G. dlata. appeared to be com-petitive. These competitive inhibiton of the butanol fraction was observed to be higher than the methanol extract. Methanol extract of G. efara inhibited a [sub 3/H]flunitrazepam, a selective benzodiazepine receptor agonist, binding to benzodiazepine receptor. GABA significantly enhanced the inhibition of [/sub 3/H]flunitrazepam binding by G. elata, and these "positive GABA shift" supported the strong possibility of agonestic activity to benzodiazepine receptor Butanol fraction was observed to be higher than crude extract by methanol in an agonistic activity to benzodiazepine receptor, furthermore enhanced the binding of [sub 3/H]SR95531 to GABA receptor. Butanol fraction of G. elata significantly diminished the pentylenetetrazole-induced lethality of mice. From these results, it can be concluded that substance or substances with neurochemical properties characteri- stic of a benzodiazepine receptor agonist may be important components, and contribute to the anticonvulsant property of G. elata.

  • PDF

Estrogen Inhibits Bcl-2 Expression and Stimulates Apoptosis Mediated by 2,3,7,8-Tetrachlrodibenzo-p-dioxirn

  • Hwang, Sohyun;Such, Jaehong;Byun, Boo-Hyeong;Joe, Cheol O.
    • Toxicological Research
    • /
    • v.19 no.4
    • /
    • pp.325-330
    • /
    • 2003
  • The effects of estrogen on apoptosis induced by 2,3,7,8-tetrachlorodibenzo-p-doxin (TCDD) were examined in cultured MCF-7 cells. TCDD stimulated apoptosis and inhibited the expression of bcl-2 gene in MCF-7 cells grown in the media supplemented with 10% fetal bovine serum. However, TCDD failed to induce apoptosis if cells were grown in the media deprived of all estrogen-like compounds. Removal of estrogen-like compounds from the growth media also led to the activation of bcl-2 gene expression in cells treated with TCDD. Combined treatment of estrogen with TCDD abrogated the binding of Aryl hydrocarbon Receptor (AhR)-TCDD complex to Dioxin response element (DRE) of bcl-2 gene leading to the inhibition of bcl-2 gene expression as well as stimulation of apoptosis. The present study suggests that the binding of estrogen receptor (ER)-estrogen complex to the estrogen responsive element (E) interferes with the binding of AhR- TCDD complex to the DRE and inhibits the bcl-2 expression.

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • So Jin Sim;Jeong-Hoon Jang;Joon-Seok Choi;Kyung-Soo Chun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.568-576
    • /
    • 2024
  • Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

Interaction of Antihistaminics with Muscarinic Receptor(I) -Action on the cardiac muscarinic receptor- (항(抗) Histamine제(劑)와 Muscarinic Receptor와의 상호작용(相互作用)(I) -심장(心臟) muscarinic receptor에 대한 작용(作用)-)

  • Lee, Shin-Woong;Park, Yeung-Joo;Lee, Jeung-Soo;Ha, Kwang-Won;Jin, Kap-Duck
    • YAKHAK HOEJI
    • /
    • v.32 no.2
    • /
    • pp.101-111
    • /
    • 1988
  • $[^3H]$ Quinuclidinyl benzilate(QNB) binding assays were performed in the dog ventricular sarcolemma fraction enriched approx. 32-fold in sarcolemma compared to the starting homogenate to elucidate the effect of antihistaminics on cardiac muscarinic receptor. Chlorpheniramine(CHP) inhibited specific binding of $[^3H]$QNB and delayed the equilibrium binding. The rate constants at $37^{\circ}C$ for formation and dissociation of the QNB receptor complex were $0.38{\times}10^9\;M^{-1}$ and $1.6{\times}10^{-2}\;min^{-1}$, respectively. The mean value for the dissociation constant from the pairs of the rate constants was 43. 2 pM and this value was similar to the value(44.8pM) determined from Scatchard analysis. CHP decreased association rate constant, indicating increase in $K_D$ value. Decrease in affinity without affecting the binding site concentration$(B_{max})$ for $[^3H]$QNB binding by CHP was also demonstrated by Scatchard analysis. $K_i$ values for $H_i$-blockers that inhibited specific $[^3H]$QNB binding were $0.02{\sim}4.8{\mu}M$. Cimetidine with $K_i$ value of $230{\mu}M$, however, was ineffective in displacing $[^3H]$QNB binding at concentration of $50{\mu}M$. The Hill coefficient for $H_1$-blockers were about one. The results indicate that $H_1$-antihistaminics inhibit $[^3H]$ QNB binding by interaction with myocardiac muscarinic cholinergic receptor and anticholinergic side effects of these drugs are mainly due to this receptor blocking mechanism.

  • PDF

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.

The Golgi complex: a hub of the secretory pathway

  • Park, Kunyou;Ju, Sungeun;Kim, Nari;Park, Seung-Yeol
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.246-252
    • /
    • 2021
  • The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.

Taste Transduction (맛의 신호전달)

  • 임호수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.645-653
    • /
    • 2003
  • Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to tie brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas tile second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.