• Title/Summary/Keyword: Receiver based

Search Result 2,100, Processing Time 0.033 seconds

Ranging Performance for Spoofer Localization using Receiver Clock Offset

  • Lee, Byung-Hyun;Seo, Seong-Hun;Jee, Gyu-In;Yeom, Dong-Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 2016
  • In this paper, the performance of ranging measurement, which is generated using two receiver clock offsets in one receiver, was analyzed. A spoofer transmits a counterfeited spoofing signal which is similar to the GPS signal with hostile purposes, so the same tracking technique can be applied to the spoofing signal. The multi-correlator can generate two receiver clock offsets in one receiver. The difference between these two clock offsets consists of the path length from the spoofer to the receiver and the delay of spoofer system. Thus, in this paper, the ranging measurement was evaluated by the spoofer localization performance based on the time-of-arrival (TOA) technique. The results of simulation and real-world experiments show that the position and the system clock offset of the spoofer could be estimated successfully.

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

Algorithm for Threat Data Integration of Multiple Sensor and selection of CounterMeasures (이기종 다중센서 위협데이터 통합 및 대응책 선정 알고리즘)

  • Go, Eun-Kyoung;Woo, Sang-Min;Jeong, Un-Seob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.474-481
    • /
    • 2011
  • The Electronic Warfare Computer for the Aircraft Survivability Equipment will improve the ability for countermeasures by analysis about threat information. This paper suggests method that threat data integration of multiple sensors(Radar Warning Receiver, Laser Warning Receiver, Missile Warning Receiver). The algorithm of threat data integration is based on detected threat sequence and azimuth information. The threat sequence information is analyzed in advance and the azimuth data is received from sensors. The suggested method is evaluated through simulation under the environment like real helicopter.

Implementation and Experimental Test Result of a Multi-frequency and Multi-constellation GNSS Software Receiver Using Commercial API

  • Han, Jin-Su;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this paper, we implement a navigation software of a Global Navigation Satellite System (GNSS) receiver based on a commercial purpose GNSS software receiver platform and verify its performance by performing experimental tests for various GNSS signals available in Korea region. The SX3, employed in this paper, is composed of an application program and a Radio Frequency (RF) frontend, and can capture and process multi-constellation and multi-frequency GNSS signals. All the signal processing procedure of SX3 is accessible by the receiver software designer. In particular for an easy research and development, the Application Programing Interface (API) of the SX3 has a flexible architecture to upgrade or change the existing software program, equipped with a real-time monitoring function to monitor all the API executions. Users can easily apply and experiment with the developed algorithms using a form of Dynamic Link Library (DLL) files. Thus, by utilizing this flexible architecture, the cost and effort to develop a GNSS receiver can be greatly reduced.

Implementation of Integrated Receiver for Terrestrial/Cable/Satellite HD Broadcasting Services (유럽형 지상파/케이블/위성 멀티모드 HD 방송 수신이 가능한 통합 수신기 구현)

  • Lee, Youn-Sung;Kwon, Ki Won;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2113-2120
    • /
    • 2015
  • This paper presents an integrated receiver to support multimode broadcasting standards such as DVB-T2, DVB-C2, and DVB-S2 in a single platform. The integrated receiver consists of a tuner block, a receiver engine, a frame processor, and an A/V decoder. The receiver engine includes a channel decoding engine and a demodulation engine to perform OFDM and APSK demodulations. The frame processor performs deinterleaving and BB frame decoding functions. The demodulator engine and the frame processor are implemented in two FPGA devices and DSP-based embedded software, respectively. To verify the functionality of the integrated receiver, it is tested in the laboratory. Commercial PC-based modulators are used to generate the DVB-T2, DVB-C2, and DVB-S2 modulated signals. The integrated receiver was tested under various operation modes as specified in the standards such as DVB-T2, DVB-C2, and DVB-S2 and showed successful operation in all the scenarios tested.

Error Performance of Spatial-temporal Combining-based Spatial Multiplexing UWB Systems Using Transmit Antenna Selection

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • This paper applies transmit antenna selection algorithms to spatial-temporal combining-based spatial multiplexing (SM) ultra-wideband (UWB) systems. The employed criterion is based on the largest minimum output signal-to-noise ratio of the multiplexed streams. It is shown via simulations that the bit error rate (BER) performance of the SM UWB systems based on the two-dimensional Rake receiver is significantly improved by antenna diversity through transmit antenna selection on a log-normal multipath fading channel. When the transmit antenna diversity through antenna selection is exploited in the SM UWB systems, the BER performance of the spatial-temporal combining-based zero-forcing (ZF) receiver is also compared with that of the ZF detector followed by the Rake receiver.

A CMOS Impulse Radio Ultra-Wideband Receiver for Inner/Inter-chip Wireless Interconnection

  • Nguyen, Chi Nhan;Duong, Hoai Nghia;Dinh, Van Anh
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.176-181
    • /
    • 2013
  • This paper presents a CMOS impulse radio ultra-wideband (IR-UWB) receiver implemented using IBM 0.13um CMOS technology for inner/inter-chip wireless interconnection. The IR-UWB receiver is based on the non-coherent architecture which removes the complexity of RF architecture (such as DLL or PLL) and reduces power consumption. The receiver consists of three blocks: a low noise amplifier (LNA) with active balun, a correlator, and a comparator. Simulation results show the die area of the IR-UWB receiver of 0.2mm2, a power gain (S21) of 12.5dB, a noise figure (NF) of 3.05dB, an input return loss (S11) of less than -16.5dB, a conversion gain of 18dB, a NFDSB of 22. The receiver exhibits a third order intercept point (IIP3) of -1.3dBm and consumes 22.9mW of power on the 1.4V power supply.

Analysis of Double-Differenced Code-Pseudorange Noise Characteristics of GNSS Receiver Combinations using Zero-Baseline Test (영기선 테스트를 이용한 GNSS 수신기 조합별 코드의사거리 이중차분 잡음 특성 분석)

  • Bong-Gyu Park;Kwan-Dong Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.245-256
    • /
    • 2024
  • Following the introduction of civilian navigation, the commercial Global Navigation Satellite System (GNSS) receivers' market has been expanding in various fields such as autonomous driving and smart cities. With improved receiver performance and widespread use of GNSS, the configurations of base and rover receivers are becoming more complex. As a result, user must consider combinations of base stations with different qualities, costs, and performances. To address these issues, we conducted zero-baseline tests to analyze the double-differenced code-pseudorange noise of various receiver combinations, ranging from low- to high-cost. The results showed that the noise varied depending on the receiver combination. Notably, receivers from the same manufacturer exhibited similar noise and positioning errors despite significant price differences. We also found that the double-differenced noise of all receiver combinations was correlated with the Carrier-to-Noise Density Ratio (C/N0), the satellite elevation angle, and the Doppler shift, and it did not perfectly follow a normal distribution. Further analysis based on Modified Allan Deviation (MDEV) showed that different types of noise were observed for each receiver combination and the double-differenced noise and positioning errors have similar statistical characteristics. From this study, the importance of receiver combinations and their various characteristics can be better understood.

Performance Evaluation of Vector Tracking Loop Based Receiver for GPS Anti-Jamming Environment (GPS 교란 환경에서 벡터추적루프 기반 수신기 성능평가)

  • Song, Jong-Hwa;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.152-157
    • /
    • 2013
  • In this paper, we represent the implementation and performance analysis of vector tracking loop based GPS receiver for jamming environment. The vector tracking loop navigation performance is compared by simulation with conventional tracking loop. The simulation results shows that vector tracking loop is more robust than conventional tracking loop in jamming environment. The vector tracking loop can gain 2dB in jamming performance capability over a conventional GPS receiver. Also, Anti-jamming performance of INS Doppler aiding and deep integration method are compared.

Fault Detection and Isolation for Inertial Sensor Using Single Antenna GPS Receiver (단일 안테나 GPS 수신기를 이용한 관성센서의 고장검출 및 분리)

  • 김영진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1037-1043
    • /
    • 2004
  • In this paper, a new fault detection and isolation algorithm fur inertial sensor system is proposed. To identify the inertial sensor fault, single antenna GPS receiver is used as an effective redundancy source. To use GPS receiver as redundancy for the inertial sensors, the algorithm to estimate the attitude and acceleration using single antenna GPS receiver is adopted. By using Doppler shift of carrier phase signal and kinetic characteristics of aircraft, attitude information of aircraft can be obtained at the coordinated flight condition. Based on this idea, fault diagnosis algorithm for inertial sensors using single antenna GPS based attitude is proposed. For more effective FDI, decision variables considering the aircraft maneuver are proposed. The effectiveness of the proposed algorithm is verified through the numerical simulations.