• Title/Summary/Keyword: Receiver Systems

Search Result 1,454, Processing Time 0.026 seconds

Two-stage ML-based Group Detection for Direct-sequence CDMA Systems

  • Buzzi, Stefano;Lops, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • In this paper a two-stage maximum-likelihood (ML) detection structure for group detection in DS/CDMA systems is presented. The first stage of the receiver is a linear filter, aimed at suppressing the effect of the unwanted (i.e., out-of-grout) users' signals, while the second stage is a non-linear block, implementing a ML detection rule on the set of desired users signals. As to the linear stage, we consider both the decorrelating and the minimum mean square error approaches. Interestingly, the proposed detection structure turns out to be a generalization of Varanasi's group detector, to which it reduces when the system is synchronous, the signatures are linerly independent and the first stage of the receiver is a decorrelator. The issue of blind adaptive receiver implementation is also considered, and implementations of the proposed receiver based on the LMS algorithm, the RLS algorithm and subspace-tracking algorithms are presented. These adaptive receivers do not rely on any knowledge on the out-of group users' signals, and are thus particularly suited for rejection of out-of-cell interference in the base station. Simulation results confirm that the proposed structure achieves very satisfactory performance in comparison with previously derived receivers, as well as that the proposed blind adaptive algorithms achieve satisfactory performance.

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

Effects of Reflectors and Receivers on the Thermal Performance of Dish-Type Solar Power Systems

  • Ma, D.S.;Kim, Y.;Seo, T.B.;Kang, Y.H.;Han, G.Y.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.662-667
    • /
    • 2007
  • The thermal performance comparisons of the dish solar collector system are numerically investigated with mirror arrays and receiver shapes. In order to compare the performances of the dish solar collector systems, six different mirror arrays and four different receiver shapes are considered and the radiative heat flux distribution on the inside of the receiver is analyzed. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference of the mirror arrays. Five different mirror arrays of twelve identical parabolic -shaped mirror facets of which diameter are 0.4 m are proposed in this study. Their reflecting areas, which are 1.5 $m^2$, are the same. Four different receiver shapes are a dome, a conical, a cylindrical and a unicorn type. The solar irradiation reflected by mirrors is traced using the Monte-Carlo method. In addition, the radiative properties of the mirror surface can vary the thermal performance of the dish solar collector system so that the effects of the surface reflectivity and the surface absorptivity are considered. Based on the calculation, the design information of dish solar collector system for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4INLINE has the best performance in mirror arrays except the perfect mirror.

  • PDF

A new image rejection receiver architecture using simultaneously high-side and low-side injected LO signals (하이사이드와 로우사이드 LO 신호를 동시에 적용하는 새로운 이미지 제거 수신기 구조)

  • Moon, Hyunwon;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose a new image rejection receiver architecture using simultaneously the high-side and low-side injected LO signals. The proposed architecture has a lower noise figure (NF) performance and a higher linearity characteristic than the previous receiver architecture using a single LO signal. Also, the proposed receiver shows a higher IRR performance about 6dB than that of the previous Weaver image rejection architecture even though the same gain and phase errors between I-path and Q-path exist. To verify these characteristics, we derive an IRR formular of the proposed architecture as a function of mismatch parameters. And we demonstrate its formular's usefulness through the system simulation. Therefore, the proposed architecture will be widely used to implement the image rejection receiver due to its higher IRR performance.

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

Low Complexity Ordered Successive Cancellation Algorithm for Multi-user STBC Systems

  • Le, Van-Hien;Yang, Qing-Hai;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.162-168
    • /
    • 2007
  • This paper proposes two detection algorithms for Multi-user Space Time Block Code systems. The first one is linear detection Gaussian Elimination algorithm, and then it combined with Ordered Successive Cancellation to get better performance. The comparisons between receiver and other popular receivers, including linear receivers are provided. It will be shown that the performance of Gaussian Elimination receiver is similar but more simplicity than linear detection algorithms and performance of Gaussian Elimination Ordered Successive Cancellation superior as compared to other linear detection method.

Application of SVD on Suppression of IEEE 802.11a Interference in TH-PAM UWB Systems

  • Xu, Shaoyi;Bai, Zhiquan;Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.237-239
    • /
    • 2007
  • Interference from IEEE 802.11a systems affects ultra-wideband (UWB) systems significantly. In this letter, we suggest a novel narrow-band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm in time-hopping pulse amplitude modulation (TH-PAM) UWB systems. The SVD algorithm is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional notch filter and rake receiver, our method is more effective and the receiver complexity can be greatly reduced.

  • PDF

A General Method for Error Probability Computation of UWB Systems for Indoor Multiuser Communications

  • Durisi, Giuseppe;Tarable, Alberto;Romme, Jac;Benedetto, Sergio
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.354-364
    • /
    • 2003
  • A general method for the evaluation of the symbol error probability (SER) of ultra wideband (UWB) systems with various kind of modulation schemes (N-PAM, M-PPM, Bi-Orthogonal), in presence of multipath channel, multiuser and strong narrowband interference, is presented. This method is shown to be able to include all the principal multiaccess techniques proposed so far for UWB, time hopping (TH), direct sequence (DS) and optical orthogonal codes (OOC). A comparison between the performance of these multiple access and modulation techniques is given, for both ideal Rake receiver and minimum mean square error (MMSE) equalizer. It is shown that for all the analyzed multiple access schemes, a Rake receiver exhibits a high error floor in presence of narrowband interference (NBI) and that the value of the error floor is in-fluenced by the spectral characteristics of the spreading code. As expected, an MMSE receiver offers better performance, representing a promising candidate for UWB systems. When the multiuser interference is dominant, all multiple access techniques exhibit similar performance under high-load conditions. If the number of users is significantly lower than the spreading factor, then DS outperforms both TH and OOC. Finally 2PPM is shown to offer better performance than the other modulation schemes in presence of multiuser interference; increasing the spreading factor is proposed as a more effective strategy for SER reduction than the use of time diversity.

Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System (농업기계 내비게이션을 위한 INS/GPS 통합 연구)

  • Noh, Kwang-Mo;Park, Jun-Gul;Chang, Young-Chang
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

Performance analysis of TR, DTR and PRM UWB systems in frequency selective channel (주파수 선택적 채널에서의 TR, DTR과 PRM UWB 통신 시스템 성능분석)

  • Woo Seon-Keol;Choi Ho-Seon;Yang Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.45-54
    • /
    • 2006
  • The UWB signal distortion in frequency selective channel has made it difficult to implement the channel estimator and the synchronizer of the UWB receiver. In this paper, we examine the performances of TR(Transmitted Reference) and DTR(Differential TR) UWB which use either reference pulse or differential method to estimate the channels. we also propose a FSK-based PRM(Pulse Repetition Modulation) UWB system as an another form of UWB system which is advantageous in frequency selective channel. Finally, resorting to statistical analysis, we examine the noise effect due to noisy reference at an auto-correlation(AcR) receiver. moreover, SNR dependance of the integration length in the AcR receiver is also investigated.

  • PDF