• Title/Summary/Keyword: Receiver Autonomous Integrity Monitoring

Search Result 10, Processing Time 0.035 seconds

Multiple-Hypothesis RAIM Algorithm with an RRAIM Concept (RRAIM 기법을 활용한 다중 가설 사용자 무결성 감시 알고리듬)

  • Yun, Ho;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • This paper develops and analyzes a new multiple-hypothesis Receiver Autonomous Integrity Monitoring (RAIM) algorithm as a candidate for future standard architecture. The proposed algorithm can handle simultaneous multiple failures as well as a single failure. It uses measurement residuals and satellite observation matrices of several consecutive epochs for Failure Detection and Exclusion (FDE). The proposed algorithm redueces the Minimum Detectable Bias (MDB) via the Relative RAIM (RRAIM) scheme. Simulation results show that the proposed algorithm can detect and filter out multiple failures in tens of meters.

Performance Analysis on GPS RAIM in the Post SA Era

  • Choi, Jae-Won;Lee, Jang-Gyu;Park, Chan-Gook;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.4-56
    • /
    • 2001
  • Using GPS in the navigation systems such as aviation, maritime and land applications, integrity is considered importantly with accuracy for safety. Integrity monitoring performed in the GPS receiver itself is Receiver Autonomous Integrity Monitoring (RAIM) and need not an independent ground monitoring station. RAIM algorithm uses redundant information when more than four satellites are visible and makes consistency checks between measurement information to alarm users whether the system is operating out of its specified performance limits. Selective Availability (SA) that was used to protect the security interests of the U.S. and its allies by globally denying the full accuracy of the civil system was turned off on May 1, 2000 ...

  • PDF

Two-Failure Gps Raim by Parity Space Approach (패러티 공간을 이용한 2개 GPS 파라미터 고장진단)

  • Yoo, Chang-Sun;Ahn, Iee-Ki;Lee,Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.52-60
    • /
    • 2003
  • In aviation navigation using GPS, requirements on availability and integrity must be absolutely satisfied. Current study on accomplishing this integrity includes RAIM(Receiver Autonomous Integrity Monitoring), monitoring integrity internaIly in GPS receiver itself. Parity space technique as one of RAIM techniques has shown the advantages in fault detection and isolation due to each use of its magnitude and direction under the assumption of one fault. ln case of multiple fault, as biases in errors interact decreasing the effect of multiple fault in parity space, the exact fault detection and identification(FDI) may be difficult to be conducted. This paper focuses on FDI study on two faults and explains why parity space techniques applied on single fault is not adequate to the application of multiple fault case and shows that extended parity space technique may improve the performance of RAIM on two faults.

Study on Two-Failure GPS RAIM Problem (GPS RAIM에서의 2개 파라미터 고장진단에 대한 연구)

  • 유창선;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.194-194
    • /
    • 2000
  • In aviation navigation by GPS, requirements on availability and integrity must be absolutely satisfied for safety. Current study on accomplishing this integrity includes RAM(Receiver Autonomous Integrity Monitoring), checking integrity internally in GPS receiver itself. However RAIM techniques have be investigated and presented under assumption that there is included only one fault in measurements from GPS, In case of multiple fault, an interaction among bias errors sometimes results in decreasing the effect of multiple fault. This may make an exact fault detection and identification difficult, and study on mutiple fault RAIM focused on. This paper explains the reasons that techniques applied on single fault are not adequate to extend directly to two faults case and shows that RAIM solution on two fault may be given in revised parity space.

  • PDF

A GPS Positioning and Receiver Autonomous Integrity Monitoring Algorithm Considering SA Fade Away (고의잡음의 제거를 고려한 GPS항법 및 무결성 검정알고리즘)

  • Choi, Jae-Youl;Park, Soon;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2002
  • After the removal of SA (Selective Availability), horizontal accuracy of 25m(2dRMS) is easily obtained using GPS (Global Positioning System). In this paper, the error characteristics without SA are analyzed and a navigation algorithm concerns this error characteristics is proposed to further improve the accuracy. The proposed method utilizes the relationship between elevation angle and errors that are remained after ionospheric and troposheric delay compensation. The relationship is derived from real measurements and used as a weighting matrix of weighted least squares estimator. Furthermore, a RAIM (Receiver Autonomous Integrity Monitoring) technique is included to remove abnormal measurements affected by multi-path or low SNR (Signal-to-Noise Ratio). It is shown that using the proposed method, more than 4 times accurate result, which is comparable with DGPS (Differential GPS), can be obtained from experiments with real data. Besides accuracy and reliability, the proposed method reduces large jumps in position and maintains better performance than a method using mask angle to completely remove satellites below this mask angle. Thus it is expected that the proposed method can be efficiently applied to land navigation where some satellites are blocked by building or forest.

Required Navigation Performance Implementation of Mission Equipment Package for Korean Utility Helicopter (한국형 가동헬기 임무탑재장비 요구항법성능 구현)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Oh, Woo-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.798-804
    • /
    • 2011
  • A number of navigation improvements are envisaged : Differential GPS - WAAS, LAAS, and Performance Based Navigation. The GPS receiver verifies the integrity(usability) of the signals received from the GPS constellation through a process called receiver autonomous integrity monitoring(RAIM) to determine if a satellite is providing corrupted information. This paper describe the RAIM function and Performance-Based Navigation implementation of Mission Equipment Package(MEP) for Korean Utility Helicopter.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Performance Comparison of Anti-Spoofing Methods using Pseudorange Measurements (의사거리 측정치를 이용하는 기만신호 검출 기법의 성능 비교)

  • Cho, Sung-Lyong;Shin, Mi-Young;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.793-800
    • /
    • 2010
  • GPS spoofing is an intentional interference which uses the mimic GPS signals to fake the receivers. The generic GPS receiver is hard to recognize the spoofing signal because the spoofer generates the fake signals as close as possible to the GPS signal. So the spoofer can do critical damage to public operations. This paper introduces a basic concept of spoofing and analyzes the effect of the spoofing signal to the GPS receiver. Also for stand-alone GPS receivers, two anti-spoofing methods are implemented : RAIM based method and the SQM based method. To evaluate the performance of anti-spoofing method, the software based spoofing signal generator and GPS signal generator are implemented. The performance of the anti-spoofing methods obtained using the output of the software based GPS receiver shows that SQM based method is more effective when multiple spoofing signals exist.

Fault Detection Performance Analysis of GNSS Integrity RAIM (GNSS 무결성을 위한 RAIM 기법의 고장검출 성능 분석)

  • Kim, Ji Hye;Park, Kwan Dong;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Performance analysis on RAIM, which is one of the techniques for monitoring integrity to ensure the reliability of GPS, was conducted in this study. RAIM is such a method which allows its user to monitor integrity in the stand-alone mode. Among the existing RAIM procedures, the representative methods including the RCM (Range Comparison Method), LSRM (Least Square Residual Method), Parity approach and WRAIM (Weighted RAIM) were evaluated, and their performance was analyzed. To validate the performance of the implemented algorithms, fault detection was tried on the clock malfunctioning event of PRN 23 occurred on January 1st, 2004. As a result, it was identified that the LSRM and the WRAIM detected all the faults happened in the event. In the case of RCM, all the states of fault were detected except for the error which occurred as a false alarm at one epoch. Furthermore, simulated biases were added for each satellite to analyze the sensitivity of each algorithm. Consequently, when biases of the 9-13 meters range were simulated for the RCM and LSRM algorithm, all the malfunctions were detected. For the WRAIM method, it could detect range biases greater than 15 meters.

The Abnormal Increasing Pseudorange Satellite Detection Method Using Comparison of Residual Horizontal Projection (잔차 수평 투영 비교를 이용한 의사거리 비정상 증가 위성 식별)

  • Ahn, Yong-Woon;Ahn, Jong-Sun;Won, Dae-Hee;Heo, Mun-Beom;Jo, Jeong-Ho;Sung, Sang-Kyung;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.570-576
    • /
    • 2010
  • This paper can be used for GPS air navigation study on integrity monitoring algorithm as, the projected horizontal plane using GPS pseudorange residuals for fault detection satellites were suspected. Failure to remove the detected suspicious satellite, compare with threshold which is calculated using satellite deployment (PDOP) and determine whether the failure is presented. The theory that horizontal projection of the satellite failure residuals greater than residual of normal satellite is proved mathematically. Comparison with horizontal projection residuals are likely to malfunction in the satellite were presented. To evaluate the proposed algorithm, bias fault insert into GPS pseudorange, and compare with conventional parity space method about fault detection and isolation capability.