• Title/Summary/Keyword: Received Power Conversion

Search Result 37, Processing Time 0.019 seconds

Analysis of Impedance Performance for Condenser by Harmonic Current Source (고조파 전류원에 의한 콘덴서 임피던스 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • Most of the user has been used linear load and non-linear load. The former is usually inductive load which is needed power factor compensation, the latter is power conversion system device. Actually two kinds of load is used together in the customer application. Generally capacitor is used for power-factor compensation of inductive load and reduction harmonics of non linear load with reactor. Non-linear load generates harmonic current for its energy conversion process. If harmonic current pass along the low impedance side of distribution system, the magnification of voltage and current is appeared by the series and parallel resonance. As a result, condenser has received a bitter electrical stress by the harmonic component. In this paper, we analyzed that how resonance is changed by the 5-th harmonic current pattern and proposed an alternative plan for non-magnification.

High Efficiency Rectenna for Wireless Power Transmission Using Harmonic Suppressed Dual-mode Band-pass Filter (고조파 억압 이중모드 대역통과 여파기를 이용한 2.45 GHz 고효율 렉테나 설계)

  • Hong, Tae-Ui;Jeon, Bong-Wook;Lee, Hyun-Wook;Yun, Tae-Soon;Kang, Yong-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.64-72
    • /
    • 2009
  • In this paper, a high efficiency 2.45 GHz rectenna with a microstrip patch antenna and a dual-mode band-pass filter in which the 2nd and 3rd harmonics are suppressed, is presented. From the experimental results, the 2.45GHz rectenna using 3rd harmonic suppressed dual-mode BPF shows the conversion efficiency of 41.6% with incident power density of 0.3 mW/cm2 and the received power of 1.66 mW. This result shows high conversion efficiency because the received power of this rectenna is lower than other rectennas to be compared with. This rectenna can be applied to the WPT (Wireless Power Transmission) field for energy harvesting. Also, it is expected to be used to provide the stand-by power for the low power devices for USN, and wireless power transfer in sensor application of MEMS devices.

  • PDF

A Study on the Transmission Length Limitation by Chromatic Dispersion in High Speed FOT스s (초고속 광파이버 전송시스템에서 색분산에 의한 전송거리 제한에 관한 연구)

  • 정은숙;김재평;정진호;김영권
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.18-29
    • /
    • 1993
  • In single mode fiber optic transmission systems(FOT's) operated at high modulation rates over long fiber spans, chromatic dispersion can produce distortion in the demodulated waveforms, resulting in intersymbol interference(ISI) in the received signal and a reduction of transmission system performance. In this paper, chromatic dispersion limitations for intensity modulation and direct detection(IM-DD) systems are studied by considering the effect of phase modulation to amplitude modulation (PM-AM) conversion noise. Laser phase noise conversion to amplitude noise due to fiber chromatic dispersion is analyzed by deriving the noise power spectral density. We first derive the noise power spectral density of the laser phase noise to intensity noise conver- sion. Next, also evaluate the system power penalty and the transmitter laser linewidth required to avoid PM-AM conversion noise penalties in long-haul nonregenerative transmission system using an external modulator and optical amplifiers. For such system with optical amplifiers, transmission sys- tem length is limited due to fiber chromatic dispersion, even if an ideal external modulator is used.

  • PDF

Design and Implementation of an Analog Predistorter for M/W Repeaters (M/W 중계기용 아날로그 Predistorter의 설계 및 구현)

  • Kang, Sang-Gee;Ryu, Joon-Gyu;Chang, Dae-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The probability of an oscillation occurrence in M/W frequency conversion repeaters is low on account of the different operating frequency of the input and output signals. The probability of interference caused by the M/W frequency conversion repeaters to other systems is also low because the systems are used in the line-of-sight. Therefore M/W frequency conversion repeaters are generally used for retransmitting the signal received from base station to the islands. This paper describes the design and implementation of analog predistorter for M/W frequency conversion repeaters in mobile communications. The M/W repeaters convert IF frequency of 1010+/-10MHz to RF frequency of 11GHz. A predistorter can be designed for the M/W repeater operating in either IF or M/W frequency. In this paper IF predistorter operated in 1010MHz is designed and implemented because a M/W predistorter operated in 11GHz is difficult to implement. The IF predistorter can linearize RF modules in the repeater followed by IF stages. The performance test results show that the implemented analog predistorter improves ACPR of 10dB at the output power of 25dBm with the signal frequency of 10.805GHz.

An Economic Study Analysis of Captive Power Plant as a Commercial Plant in the Cost Based Pool (자가발전기의 CBP시장 참여시 수익성 변화 평가)

  • Goh, Do-Hyun;Park, Jong-Bae;Lee, Ki-Song;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.183-185
    • /
    • 2005
  • This paper discusses an economic study analysis of captive power plant as a commercial plant in the cost based pool market. In this paper I assumed the conversion of a captive power plant owned by factories to a commercial plant and investigated the changes in profitability associated with this. I set the total electricity expense of a captive purpose plant as state A and the costs associated with converting to a commercial purpose plant as state B. Each state subdivided by case which is classified its plant variable cost, type of generation (combined cycle, single cycle) and type of power contract received. After set model for each case, different economic benefits by each case can be calculated.

  • PDF

A Highly Efficient Rectenna Using Harmonic Rejection Capability

  • Kim, Youg-Hwan;Lim, Sung-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.257-261
    • /
    • 2011
  • A highly efficient 2.4 GHz rectenna is designed using a harmonic rejection bandpass filter. The rectenna is printed on Rogers Duroid 5880 substrate with ${\varepsilon}_r$=2.2 and a thickness of 1.6 mm. The rectenna consists of a microstrip antenna and high order harmonic rejection bandpass filter, microstrip lowpass filter, and Schottky barrier diode (HSMS2820). The use of a $2^{nd}$ and $3^{rd}$ harmonic rejection microstrip bandpass filter in the rectenna results in high conversion efficiency. The proposed rectenna achieves a RF to DC conversion efficiency of 72.17 % when the received RF power is 63.09 mW.

Design of a High Speed and Low Power CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 고속 및 저전력 CMOS Demultiplexer 설계)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper proposes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that convert redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 demultiplexer (DEMUX, serial-parallel converter) IC was designed using a 0.35${\mu}m$ standard CMOS Process. Proposed demultiplexer is achieved an operating speed of 3Gb/s with a supply voltage of 3.3V and with power consumption of 48mW. Designed circuit is limited by maximum operating frequency of process. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 3Gb/s in submicron process of high of operating frequency.

  • PDF

A Survey on RF Energy Harvesting System with High Efficiency RF-DC Converters

  • Khan, Danial;Basim, Muhammad;Ali, Imran;Pu, YoungGun;Hwang, Keum Cheol;Yang, Youngoo;Kim, Dong In;Lee, Kang-Yoon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-30
    • /
    • 2020
  • Radio frequency (RF) energy harvesting technology have become a reliable and promising alternative to extend the lifetime of power-constrained wireless networks by eliminating the need for batteries. This emerging technology enables the low-power wireless devices to be self-sustaining and eco-friendly by scavenging RF energy from ambient environment or dedicated energy sources. These attributes make RF energy harvesting technology feasible and attractive to an extended range of applications. However, despite being the most reliable energy harvesting technology, there are several challenges (especially power conversion efficiency, output DC voltage and sensitivity) poised for the implementation of RF energy harvesting systems. In this article, a detailed literature on RF energy harvesting technology has been surveyed to provide guidance for RF energy harvesters design. Since signal strength of the received RF power is limited and weak, high efficiency state-of-the-art RF energy harvesters are required to design for providing sufficient DC supply voltage to wireless networks. Therefore, various designs and their trade-offs with comprehensive analysis for RF energy harvesters have been discussed. This paper can serve as a good reference for the researchers to catch new research topics in the field of RF energy harvesting.

A Study on Feasibility Analysis and Optimum Range Calculation Model by Conversion of Water Supply System (상수도 급수방식 전환의 타당성 분석 및 최적 범위 산정모델 연구)

  • Park, Junyeol;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • This study concerned the analysis on the efficiency of the conversion of water tank type supply system to direct water supply system to examine the feasibility of the conversion, as well as the calculation of optimal conversion range that enables the supply of safe, high-quality water at stable pressure in accordance with the standards of water supply facility. The results of this research showed that when converting water supply system from water tank type supply system to direct water supply system, more nodal points could be properly converted and more reduction of electricity usage was expected in case water pressure rather than residence time was fixed. This means that higher efficacy can be obtained by fixing water pressure when converting water supply system. However, since the number of the locations that received on-spot inspection was small and the electricity usage measured was not exclusively by water supply facility, it is difficult to judge that such reduction of electricity usage accurately represents reduced electricity usage by water supply facility alone. therefore, after having secured on-spot information about a larger number of locations in apartment complexes that have converted water supply system, and utilizing information about electricity usage exclusively by water supply facility, the proposed method of this research could be applied to accurately deducing expected reduction of electricity usage by water supply facilities of various other apartment complexes. It is also considered possible to deduce an effective operation method of water supply system by finding out an area that shows low pressure or low residual chlorine concentration in the optimal conversion range of water supply, followed by estimating the proper location of pumping station or the proper chlorine dosage at the power purification plant that supply water to the target area.

Development of 3300V 1MVA Multilevel Inverter using Cascaded H-Bridge Cell (3300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • Park Y.M.;Kim Y.D.;Lee H.W.;Lee S.H.;Seo K.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.593-597
    • /
    • 2003
  • Multilevel power conversion technology has received increasing attention recently for high power applications. The converters with the technology are suitable for high voltage and high power applications due to their ability to synthesize waveforms with better harmonic spectrum and apply for the high voltage equipment with a limited voltage rating of device. In the family of multilevel inverters, the topologies based on cascaded H-bridges are particularly attractive because of their modularity and simplicity of control. This paper presents multilevel inverter with cascaded H-bridge for large-power motor drives. The main features of this drive 1) reduce harmonic injection 2) can generate near-sinusoidal voltages, 3) have almost no common-mode voltage; 4) are low dv/dt at output voltage; 5)do not generate significant over-voltage on motor terminal; The topology of the developed product is presented and the feasibility study of the inverter on 3300v 1MVA 7-level H-bridge type was tarried out with experiments.

  • PDF