References
- J. Bito, R. Bahr, J. Hester, S. Nauroze, A. Georgiadis and M. Tentzeris, "A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1831-1842, May 2017. https://doi.org/10.1109/TMTT.2017.2660487
- M. Dini, A. Romani, M. Filippi, V. Bottarel, G. Ricotti and M. Tartagni, "A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources," IEEE Transactions on Power Elecronics, vol. 30, no. 10, pp. 5665-5680, Oct. 2015. https://doi.org/10.1109/TPEL.2014.2379622
- F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu and J. Cheon, "Multisource Energy Harvesting System for a Wireless Sensor Network Node in the Field Environment," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 918-927, Feb. 2019. https://doi.org/10.1109/jiot.2018.2865431
- A. Omairi, Z. H. Ismail, K. A. Danapalasingam, and M. I. Shapiai, "Power harvesting in wireless sensor networks and its adaptation with maximum power point tracking: Current technology and future directions," IEEE Internet Things J., vol. 4, no. 6, pp. 2104-2115, Dec. 2017. https://doi.org/10.1109/jiot.2017.2768410
- W. K. G. Seah, Z. A. Eu, and H.-P. Tan, "Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges," in Proc. IEEE Int. Conf. Wireless VITAE, May 2009, pp. 1-5.
- Carvalho, Carlos, and Nuno Paulino. "On the Feasibility of Indoor Light Energy Harvesting for Wireless Sensor Networks." Procedia Technology, vol. 17, pp. 343-350, 2014. https://doi.org/10.1016/j.protcy.2014.10.206
- G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, "Optimized piezo- electric energy harvesting circuit using step-down converter in discon- tinuous conduction mode," IEEE Trans. Power Electron., vol. 18, no. 2, pp. 696-703, Mar. 2003. https://doi.org/10.1109/TPEL.2003.809379
- Z. Wang, V. Leonov, P. Fiorini, and C. Van Hoof, "Realization of a wear- able miniaturized thermoelectric generator for human body applications," Sens. Actuators A, Phys., vol. 156, no. 1, pp. 95-102, Nov. 2009. https://doi.org/10.1016/j.sna.2009.02.028
-
Y. Qiu, C. Van Liempd, P. G. Blanken, and C. Van Hoof, "
$5 {\mu}W$ -to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm," in Proc. IEEE Int. Conf. Solid-State Circuits Conf. Dig. Tech. Papers, 2011, pp. 118-120. - S.-Y Kim et al., "A -20 to 30 dBm Input Power Range Wireless Power System with a MPPT-based Reconfigurable 48% Efficient RF Energy Harvester and 82% Efficient A4WP Wireless Power Receiver with Open Loop Delay Compensation" IEEE Trans. Power Electron, vol. 34, no. 7, pp. 6807-6817, July 2019.
- D. Khan, H. Abbasizadeh, Z. Hayat, N. Khan, and K. Yoon, ''A 33.3% power efficiency RF energy harvester with -25 dBm sensitivity using threshold compensation scheme,'' IDEC J. Integr. Circuits Syst, vol. 3, no. 3, Jul. 2017.
- D. Khan et al., "A Design of Ambient RF energy Harvester with Sensitivity of -21dBm and Power Efficiency of a 39.3% Using Internal Threshold Voltage Compensation," MDPI Energies, vol. 11, no. 5, May 2018.
- D. Khan et al., "A CMOS RF Energy Harvester With 47% Peak Efficiency Using Internal Threhsold Voltage Compensation," IEEE Micro. Wireless Compon. Letter, vol. 29, no. 6, pp. 415-417, June 2019. https://doi.org/10.1109/lmwc.2019.2909403
- D. Khan et al., "An efficient Reconfigurable RF-DC Converter With Wide Input Power Range for RF Energy Harvesting," IEEE Access, vol. 8, pp. 79310-79318, April 2020. https://doi.org/10.1109/access.2020.2990662
- S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibration as a power source for wireless sensor nodes," Computer Communications, vol. 26, no. 11, pp. 1131-1144, 2003. https://doi.org/10.1016/S0140-3664(02)00248-7
- S. Roundy and P. K. Wright, "A piezoelectric vibration based generator for wireless electronics," Smart Materials and Structures, vol. 13, no. 5, pp. 1131, 2004. https://doi.org/10.1088/0964-1726/13/5/018
- R. Venkatasubramanian, C. Watkins, D. Stokes, J. Posthill, and C. Caylor, "Energy harvesting for electronics with thermoelectric devices using nanoscale materials," in IEEE International Electron Devices Meeting, 2007, pp. 367-370, IEEE, 2007.
- H. A. Sodano, G. E. Simmers, R. Dereux, and D. J. Inman, "Recharging batteries using energy harvested from thermal gradients," Journal of Intelligent Material Systems and Structures, vol. 18, no. 1, pp. 3-10, 2007. https://doi.org/10.1177/1045389X06063906
- J. -P. Fleurial, G. Snyder, J. Herman, M. Smart, P. Shakkottai, P. Giauque, and M. Nicolet, "Miniaturized thermoelectric power sources," tech. rep., SAE Technical Paper, 1990.
- B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. Pister, "An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks," in Proceedings of IEEE Sensors, 2002, vol. 2, pp. 1510-1515, IEEE, 2002.
- O. Schultz, R. Preu, S. Glunz, and A. Mette, "Silicon solar cell with screen-printed from side metallization exceeding 19% effiecieny," in Proceedings of the 22nd European Photovoltaic Solar Energy Conference (PVSEC), pp. 980-984, 2007.
- Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, and O. Picon, "A dual circularly polarized 2.45-GHz rectenna for wireless power transmis-sion," IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 306-309, Apr. 2011. https://doi.org/10.1109/LAWP.2011.2141973
- J. Bito, J. G. Hester, and M. M. Tentzeris, "Ambient RF energy harvesting from a two-way talk radio for flexible wearable wireless sensor devices utilizing inkjet printing technologies," IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4533-4543, Dec. 2015. https://doi.org/10.1109/TMTT.2015.2495289
- M. A. Abouzied and E. Sanchez-Sinencio, "Low-input power-level CMOS RF energy-harvesting front end," IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3794-3805, Nov. 2015. https://doi.org/10.1109/TMTT.2015.2479233
- Y.-J. Ren and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1495-1502, Jun. 2006. https://doi.org/10.1109/TMTT.2006.871362
- Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid‑State Electron 53:684-693. https://doi.org/10.1016/j.sse.2008.12.011
- Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sustain Energy Rev 45:769-784. https://doi.org/10.1016/j.rser.2015.02.021
- O. Jonah and S. V. Georgakopoulos, "Wireless power transfer in concrete via strongly coupled magnetic resonance,'" J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689 -1699, 2013. https://doi.org/10.1021/ci400128m
- M. Xia and S. Aissa, "On the efficiency of far-field wireless power transfer,'' IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2835-2847, Jun. 2015. https://doi.org/10.1109/TSP.2015.2417497
- S. Y. Hui, "Planar wireless charging technology for portable electronic products and Qi," Proc. IEEE, vol. 101, no. 6, pp. 1290-1301, Jun. 2013. https://doi.org/10.1109/JPROC.2013.2246531
- A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, vol. 317, no. 5834, pp. 83-86, June 2007. https://doi.org/10.1126/science.1143254
- L. Xiao, P. Wang, D. Niyato, D. Kim, and Z. Han, "Wireless Networks with RF Energy Harvesting: A Contemporary Survey," 2014.
- H. Liu, "Maximizing efficiency of wireless power transfer with resonant Inductive Coupling," 2011. (Available on-line at http://hxhl95.github.io/media/ib ee.pdf).
- C. Mikeka and H. Arai, "Design issues in radio frequency energy harvesting system," Sustainable Energy Harvesting Technologies-Past, Present and Future, December 2011.
- "FCC Codes of Regulation," http://transient.fcc.gov/oet/info/rules/.
- H. R. Anderson, Fixed Broadband Wireless System Design, John Wiley & Sons, 2003.
- H. T. Friis, "A note on a simple transmission formula," Proceedings IRE, vol. 34, no. 5, pp. 254-256, 1946.
- L-G. Tran, H-K. Cha and W-T. Park, "RF power harvesting: a review on designing methodologies and applications," 2017.
- Hemour S, Zhao Y, Lorenz CHP, Houssameddine D, Gui Y, Hu CM et al (2014) Towards low‑power high‑efficiency RF and microwave energy harvesting. IEEE Trans Microw Theory Tech 62:965-976. https://doi.org/10.1109/TMTT.2014.2305134
- Lorenz CHP, Hemour S, Wu K (2016) Physical mechanism and theoretical foundation of ambient RF power harvesting using zero‑bias diodes. IEEE Trans Microw Theory Tech 64:2146-2158. https://doi.org/10.1109/TMTT.2016.2574848
- T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, "A 950 MHz rectifier circuit for sensor networks with 10 m-distance," in IEEE International Solid-State Circuits Conference, 2005, Digest of Technical Papers (ISSCC), pp. 256-597, IEEE, 2005.
- H. Lin, K.-H. Chang, and S.-C. Wong, Novel high positive and negative pumping circuits for low supply voltage," in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 238-241, IEEE 1999.
- S. Agrawal, S.K. Pandey, J. Singh, and M. S. Parihar, "Realization of efficient RF energy harvesting circuits employing different matching technique," in Proc. of IEEE International Symposium on Quality Electronic Design (ISQED), pp. 754-761, Santa Clara, CA, March 2014.
- S. B. Alam, M. S. Ullah, and S. Moury, "Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna," in Proc. of IEEE International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, May 2013.
- A. Nimo, D. Grgic, T. Ungan, and L. M. Reindl, "A new family of passive wireless RF harvesters based on R-C-Quartz oscillators," in Proc. of IEEE European Microwave Conference (EuMC), pp. 511-514, Nuremberg, German, Oct. 2013.
- P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, "Design optimization and implementation for RF energy harvesting circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24-33, March 2012. https://doi.org/10.1109/JETCAS.2012.2187106
- M. Roberg, T. Reveyrand, I. Ramos, E. A. Falkenstein, and Z. Popovic, "High-efficiency harmonically terminated diode and transistor rectifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4043-4052, Dec. 2012. https://doi.org/10.1109/TMTT.2012.2222919
- T. Thierry, F. Ludivine, O. Laurent, and V. Valerie, "COTS-based modules for far-field radio frequency energy harvesting at 900MHz and 2.4GHz," in Proc. of IEEE International New Circuits and Systems Conference (NEWCAS), Paris, France, June 2013.
- P. Saffari, A. Basaligheh, K. Moez, "An RF-to-DC recifier with high efficiency over wide input power range for RF energy harvesting applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 12, pp. 4862-4875, Dec. 2019. https://doi.org/10.1109/TCSI.2019.2931485
- Y. Lu et al., "A wide input range dual-path CMOS rectifier for RF energy harvesting," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 166-170, Feb. 2017. https://doi.org/10.1109/TCSII.2016.2554778
- Z. Hameed and K. Moez, "A 3.2 V -15 dBm adaptive thresholdvoltage compensated RF energy harvester in 130 nm CMOS," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 4, pp. 948-956, Apr. 2015. https://doi.org/10.1109/TCSI.2015.2413153
- Z. Hameed and K. Moez, "Hybrid forward and backward thresholdcompensated RF-DC power converter for RF energy harvesting," IEEE J. Emerg. Sel. Topics Circuit Syst., vol. 4, no. 3, pp. 335-343, Sep. 2014. https://doi.org/10.1109/JETCAS.2014.2337211
- M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, "Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters," IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 622-634, March 2014. https://doi.org/10.1109/JSSC.2014.2302793
- M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, "A self-calibrating RF energy harvester generating 1V at 26.3dBm," in Proc. of IEEE Symposium on VLSI Circuits (VLSIC), pp. 226-227, Kyoto, June 2013.
- S. Scorcioni, L. Larcher, A. Bertacchini, L. Vincetti, and M. Maini, "An integrated RF energy harvester for UHF wireless powering applications," in Proc. of IEEE Wireless Power Transfer (WPT), pp. 92-95, Perugia, May 2013.
- S. Scorcioni, L. Larcher, and A. Bertacchini, "Optimized CMOS RFDC converters for remote wireless powering of RFID applications," in Proc. of IEEE International Conference on RFID, pp. 47-53, Orlando, FL, April 2012.
- G. Papotto, F. Carrara, and G. Palmisano, "A 90-nm CMOS thresholdcompensated RF energy harvester," IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1985-1997, Sept. 2011. https://doi.org/10.1109/JSSC.2011.2157010
- T. Salter, K. Choi, M. Peckerar, and G. Metze, "RF energy scavenging system utilising switched capacitor DC-DC converter," Electronics Letters, vol. 45, no. 7, pp. 374-376, March 2009. https://doi.org/10.1049/el.2009.0153
- J. P. Thomas, M. A. Qidwai, and J. C. Kellogg, "Energy scavenging for small-unmanned systems," Journal of Power Sources, vol. 159, no. 2, pp. 1494-1509, September 2006. https://doi.org/10.1016/j.jpowsour.2005.12.084
- D. Y. Choi, "Comparative study of antenna designs for RF energy harvesting," Hindawi International Journal of Antennas and Propagation, February 2013.
- A. Aziz, A. Mutalib, and R. Othman, "Current developments of RF energy harvesting system for wireless sensor networks," Advances in information Sciences and Service Sciences (AISS), vol. 5, no. 11, pp. 328-338, June 2013.
- X. Shao, B. Li, N. Shahshahan, N. Goldman, T. S. Salter, and G. M. Metze, "A planner dual-band antenna design for RF energy harvesting applications," in Proc. of IEEE International Semiconductor Device Research Symposium (ISDRS), College Park, MD, Dec. 2011.
- J. M. Barcak, and H. P. Partal, "Efficient RF energy harvesting by using multiband microstrip antenna arrays with multistage rectifiers," in Proc. of IEEE Subthreshold Microelectronics Conference (SubVT), pp. 1-3, Waltham, MA, Oct. 2012.
- M. Arrawatia, M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900MHz band," in Proc. of IEEE National Conference on Communications (NCC), pp. 1-5, Bangalore, Jan. 2011.
- S. B. Alam, M. S. Ullah, and S. Moury, "Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna," in Proc. of IEEE International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, May 2013.
- M. Arsalan, M.H. Ouda, L. Marnat, T. J. Ahmad, A. Shamim, and K. N. Salama, "A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring," in Proc. of IEEE International Microwave Symposium Digest (IMS), pp. 1-4, Seattle, WA, June 2013.
- M. Arrawatia, M. S. Baghini, and G. Kumar, "RF energy harvesting system at 2.67 and 5.8GHz," in Proc. of IEEE Microwave Conference Proceedings (APMC), pp. 900-903, Yokohama, Dec. 2010.
- X. Shao, B. Li, N. Shahshahan, N. Goldman, T. S. Salter, and G. M. Metze, "A planner dual-band antenna design for RF energy harvesting applications," in Proc. of IEEE International Semiconductor Device Research Symposium (ISDRS), College Park, MD, Dec. 2011.
- Z. Zakaria, N. A. Zainuddin, M. Z. A. Abd Aziz, M. N. Husain, and M. A. Mutalib, "A parametric study on dual-band meander line monopole antenna for RF energy harvesting," in Proc. of IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Johor Bahru, Malaysia, Sept. 2013.
- B. Li, X. Shao, N. Shahshahan, and N. Goldsman, T. Salter, and G. M. Metze, "An antenna co-design dual band RF energy harvester," IEEE Transactions on Circuits and Systems I, vol. 60, no. 12, pp. 3256-3266, Dec. 2013. https://doi.org/10.1109/TCSI.2013.2264712
- Z. Zakaria, N. A. Zainuddin, M. Z. A. Abd Aziz, M. N. Husain, and M. A. Mutalib, "Dual-band monopole antenna for energy harvesting system," in Proc. of IEEE Symposium on Wireless Technology and Applications (ISWTA), Kuching, Malaysia, Sept. 2013.
- D. Yi, and T. Arslan, "Broadband differential antenna for full-wave RF energy scavenging system," in Proc. of IEEE Antennas and Propagation Conference (LAPC), pp. 325-328, Loughborough, UK, Nov. 2013.
- A. Buonanno, M. D'Urso, and D. Pavone, "An ultra wide-band system for RF Energy harvesting," in Proc. of IEEE European Conference on Antennas and Propagation (EUCAP), pp. 388-389, Rome, Italy, April 2011.
- A. Nimo, D. Grgic, and L. M. Reindl, "Ambient electromagnetic wireless energy harvesting using multiband planar antenna," in Proc. of IEEE International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, German, March 2012.
- D. Yi, T. Arslan, and A. Hamilton, "Broadband antenna for RF energy scavenging system," in Proc. of IEEE Antennas and Propagation Conference (LAPC), pp. 1-4, Loughborough, UK, Nov. 2012.
- S. Agrawal, S. Pandey, J. Singh, and P.N. Kondekar, "An efficient RF energy harvester with tuned matching circuit," VLSI Design and Test, Communications in Computer and Information Science, vol. 382, pp. 138-145, 2013. https://doi.org/10.1007/978-3-642-42024-5_17
- M. T. Penella-Lpez and M. Gasulla-Forner, "Radiofrequency energy harvesting," Powering Autonomous Sensors, Springer Netherlands, pp. 125-147, 2011.
- Hatay M (1980) Empirical formula for propagation loss in land mobile radio services. IEEE Trans Veh Technol 29:317-325. https://doi.org/10.1109/T-VT.1980.23859
- J. A. Hagerty, F. B. Helmbrecht, W. H. Mccalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1014-1024, March 2004. https://doi.org/10.1109/TMTT.2004.823585
- M. Ghovanloo, and K. Najafi, "Fully integrated wideband high-current rectifiers for inductively powered devices," IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1976-1984, Nov. 2004. https://doi.org/10.1109/JSSC.2004.835822
- J.-P. Curty, M. Declercq, C. Dehollain, and N. Joehl, Design and optimization of passive UHF RFID systems, 1st edn., Springer Science Business Media, New York, 2007.
- M. T. Penella-Lpez and M. Gasulla-Forner, "Radiofrequency energy harvesting," Powering Autonomous Sensors, Springer Netherlands, pp. 125-147, 2011.
- E. Y. Chow, A. L. Chlebowski, S. Chakraborty, W. J. Chappell, and P. P. Irazoqui, "Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent," IEEE Transactions on Biomedical Engineering, vol. 57, no. 6, pp. 1487-1496, 2010. https://doi.org/10.1109/TBME.2010.2041058
- P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, "Design optimization and implementation for RF energy harvesting circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24-33, 2012. https://doi.org/10.1109/JETCAS.2012.2187106
- J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," IEEE journal of Solid-State Circuits, vol. 11, no. 3, pp. 374-378, 1976. https://doi.org/10.1109/JSSC.1976.1050739
- J. F. Dickson, "Voltage multiplier employing clock gated transistor chain," July 22 1980. US Patent 4,214,174.
- J. Yi, W.-H. Ki, and C.-Y. Tsui, Analysis and design strategy of UHF micropower CMOS rectifiers for micro-sensor and RFID applications," IEEE Transactions on Circuit and System I: Regular Papers, vol. 54, no. 1, pp. 153-166, 2007. https://doi.org/10.1109/TCSI.2006.887974
- Facen A, Boni A (2007) CMOS power retriever for UHF RFID tags. Electron Lett 43:1424 https://doi.org/10.1049/el:20072342
- Kotani K, Sasaki A, Ito T (2009) High‑efficiency differential‑drive CMOS rectifier for UHF RFIDs. IEEE J Solid‑State Circuits 44:3011-3018. https://doi.org/10.1109/JSSC.2009.2028955
- Dehghani, S, Johnson, T., "A 2.4-GHz CMOS class-E synchronous rectifier". IEEE Trans. Microw. Theory Tech. 2016, 64, 1655-1666. https://doi.org/10.1109/TMTT.2016.2547393
- Fan, S, et al., "A 2.45 GHz Rectifier-Booster Regulator with Impedance Matching Converters for Wireless Energy Harvesting". IEEE Trans. Microw. Theory Tech. 2019, 67, 3833-3348. https://doi.org/10.1109/tmtt.2019.2910062
- P. Xu, D. Flandre, and D. Bol, "Analysis, Modeling, and Design of a 2.45-GHz RF Energy Harvester for SWIPT IoT Smart Sensors." IEEE J. Solid-State Circuits 2019, 54, 2717-2729. https://doi.org/10.1109/jssc.2019.2914581
- C.-J. Li, and T.-C. Lee, "2.4-GHz high-efficiency adaptive power." IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 434-438. https://doi.org/10.1109/TVLSI.2013.2238264
- J. Bae, S.-H. Yi, W. Choi, H. Koo, K.C Hwang, K.-Y. Lee, and Y. Yang, "5.8 GHz High-Efficiency RF-DC converter based on Common-Ground Multiple-Stack Structure". Sensors, MDPI, 2019.
- C. Wang, N. Shinohara, and T. Mitani, "Study on 5.8-GHz Single-Stage Charge Pump Rectifier for Internal Wireless System of Satellite". IEEE Microw. Mag. 2017, 65, 1058-1065.
- J. Bae, H. Koo, H. Lee, W. Lim, W. Lee, H. Kang, K.C Hwang, K.-Y. Lee, and Y. Yang, "High-efficiency rectrifier(5.2 GHz) using a Class-F Dickson charge pump". Microw. Opt. Tech. Lett. 2017, 54, 3018-3023.
- M. H. Ouda, W. Khalil, K. N. Salama, "Self-biased differential rectifier with enhanced dynamic range for wireless powering". IEEE Transactions on Circuits and Systems II: Express Briefs, 515-519, 2017.
- M. A. Abouzied, K. Ravichandran, and E. Sanchez-Sinencio, "A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability," IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 704-719, Mar. 2017. https://doi.org/10.1109/JSSC.2016.2633985
- A. K. Moghaddam, J. H. Chuah, H. Ramiah, J. Ahmadian, P. I. Mak, and R. P. Martins, "A 73.9%-efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems". IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4), 992-1002, 2017. https://doi.org/10.1109/TCSI.2016.2623821
-
P.-A. Haddad, G. Gosset, J.-P. Raskin, and D. Flandre, "Automated design of a 13.56 MHz 19
$10 {\mu}W$ passive rectifier with 72% efficiency under$10 {\mu}A$ load," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1290-1301, May 2016. https://doi.org/10.1109/JSSC.2016.2527714 - Z. Zeng, X. Li, A. Bermak, C.-Y. Tsui, and W.-H. Ki, "A WLAN 2.4-GHz RF energy harvesting system with reconfigurable rectifier for wireless sensor network," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 2362-2365.