• 제목/요약/키워드: Real-time implementation

검색결과 3,219건 처리시간 0.032초

A Study on Implementing BSC in the Public Enterprises : The Case of Korea Southern Power (공기업의 BSC 구축에 관한 연구: 한국남부발전(주) 사례를 중심으로)

  • Suh, Woo-Jong;Park, Jin-Bae;Hong, Jin-Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제14권4호
    • /
    • pp.163-182
    • /
    • 2009
  • The BSC(Balanced Scorecard), a strategic performance evaluation system, has drawn attention as an innovative tool for improving an organization's performance. Recently, the Korean government has recognized the advantages of the BSC and encouraged public enterprises to implement the BSC. However, it has been pointed out that many public enterprises have faced difficulties in constructing and operating the BSC due to lack of clear understanding, a complex environment of performance evaluation, and inherent features of organizational culture. Therefore, this study analyzed a project case of a public enterprise, Korea Southern Power (KSP), which has ever been assessed as an excellent organization in implementing BSC and managing performance. This paper provides procedures, activities, resources (manpower and time), and decision-making issues and criteria required for implementing BSC, along with real project outcomes of the company. Such project details are expected to be used as helpful guidelines for public or non-profit organizations's BSC implementation. Furthermore, the KSP's efforts to cope with its problems and implications derived from the efforts are also expected to help other organizations construct and operate the BSC effectively.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제23권4호
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

A Study on the Incentive Method for Inducing Safe Driving (안전운전 유도를 위한 인센티브 제공 방안 연구)

  • Lee, Insik;Jang, Jeong Ah;Lee, Won Woo;Song, Jaeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제43권4호
    • /
    • pp.485-492
    • /
    • 2023
  • Among the methods to improve traffic congestion by providing real-time traffic information and solving problems like traffic congestion and traffic crashes, private enterprise is implementing policies to lower insurance premiums like compensation for drivers' driving safety scores. Despite the emergence of various incentive policies, a study on the level of incentive payment for safe/eco-friendly driving is insufficient. The research analyzed the satisfactory factors that affect the scale of incentives through questionnaires and the applicable scale of incentives that enable safe/eco-friendly driving using a binary logistic regression model. As a result of analyzing the incentive scale of the appropriate payment amount for each driving score increase, 0.4% of the toll fee was derived when the driving score increased by 20 points, and 0.5% of the toll fee was derived when the driving score increased by 30 points. This study on calculating the appropriate incentive payment scale for driver information sharing and driving score increase will help optimize incentives and prepare system implementation plans.

Implementation of reliable dynamic honeypot file creation system for ransomware attack detection (랜섬웨어 공격탐지를 위한 신뢰성 있는 동적 허니팟 파일 생성 시스템 구현)

  • Kyoung Wan Kug;Yeon Seung Ryu;Sam Beom Shin
    • Convergence Security Journal
    • /
    • 제23권2호
    • /
    • pp.27-36
    • /
    • 2023
  • In recent years, ransomware attacks have become more organized and specialized, with the sophistication of attacks targeting specific individuals or organizations using tactics such as social engineering, spear phishing, and even machine learning, some operating as business models. In order to effectively respond to this, various researches and solutions are being developed and operated to detect and prevent attacks before they cause serious damage. In particular, honeypots can be used to minimize the risk of attack on IT systems and networks, as well as act as an early warning and advanced security monitoring tool, but in cases where ransomware does not have priority access to the decoy file, or bypasses it completely. has a disadvantage that effective ransomware response is limited. In this paper, this honeypot is optimized for the user environment to create a reliable real-time dynamic honeypot file, minimizing the possibility of an attacker bypassing the honeypot, and increasing the detection rate by preventing the attacker from recognizing that it is a honeypot file. To this end, four models, including a basic data collection model for dynamic honeypot generation, were designed (basic data collection model / user-defined model / sample statistical model / experience accumulation model), and their validity was verified.

Vision-based Low-cost Walking Spatial Recognition Algorithm for the Safety of Blind People (시각장애인 안전을 위한 영상 기반 저비용 보행 공간 인지 알고리즘)

  • Sunghyun Kang;Sehun Lee;Junho Ahn
    • Journal of Internet Computing and Services
    • /
    • 제24권6호
    • /
    • pp.81-89
    • /
    • 2023
  • In modern society, blind people face difficulties in navigating common environments such as sidewalks, elevators, and crosswalks. Research has been conducted to alleviate these inconveniences for the visually impaired through the use of visual and audio aids. However, such research often encounters limitations when it comes to practical implementation due to the high cost of wearable devices, high-performance CCTV systems, and voice sensors. In this paper, we propose an artificial intelligence fusion algorithm that utilizes low-cost video sensors integrated into smartphones to help blind people safely navigate their surroundings during walking. The proposed algorithm combines motion capture and object detection algorithms to detect moving people and various obstacles encountered during walking. We employed the MediaPipe library for motion capture to model and detect surrounding pedestrians during motion. Additionally, we used object detection algorithms to model and detect various obstacles that can occur during walking on sidewalks. Through experimentation, we validated the performance of the artificial intelligence fusion algorithm, achieving accuracy of 0.92, precision of 0.91, recall of 0.99, and an F1 score of 0.95. This research can assist blind people in navigating through obstacles such as bollards, shared scooters, and vehicles encountered during walking, thereby enhancing their mobility and safety.

Development of Digital Twin System for Smart Factory Education (스마트 공장 교육을 위한 디지털 트윈 시스템 개발)

  • Kweon, Oh-seung;Kim, Seung-gyu;Kim, In-woo;Lee, Ui-he;Kim, Dong-jin
    • Journal of Venture Innovation
    • /
    • 제6권1호
    • /
    • pp.59-73
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, manufacturing is the implementation of smart factories through digital transformation, and refers to consumer-centered intelligent factories that combine next-generation digital new technologies and manufacturing technologies beyond the existing factory automation level. In order to successfully settle such a smart factory, it is necessary to train professionals. However, education for smart factories is difficult to have actual field mechanical facilities or overall production processes. Therefore, there is a need for a system that can visualize and control the flow and process of logistics at the actual production site. In this paper, the logistics flow of the actual site was implemented as a small FMS, a physical system, and the production process was implemented as a digital system. In real-time synchronization of the physical system and the digital system, the location of AGV and materials, and the process state can be monitored to see the flow of logistics and process processes at the actual manufacturing site. The developed digital twin system can be used as an effective educational system for training manpower in smart factories.

Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor (Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템)

  • Jaehyun Park;Si-Maek Lee;Beom-Joo Lee;Seon Ju Kim;Hyeong-Min Yoo
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.429-434
    • /
    • 2023
  • In this study, aimed at improving the existing acoustic emission sensor for real time monitoring, a macro-fiber composite (MFC) transducer was employed as the acoustic emission sensor in the gas leak detection system. Prior to implementation, structural analysis was conducted to optimize the MFC's design. Consequently, the flexibility of the MFC facilitated excellent adherence to curved pipes, enabling the reception of acoustic emission (AE) signals without complications. Analysis of AE signals revealed substantial variations in parameter values for both high-pressure and low-pressure leaks. Notably, in the parameters of the Fast Fourier Transform (FFT) graph, the change amounted to 120% to 626% for high-pressure leaks compared to the case without leaks, and approximately 9% to 22% for low-pressure leaks. Furthermore, depending on the distance from the leak site, the magnitude of change in parameters tended to decrease as the distance increased. As the results, in the future, not only will it be possible to detect a leak by detecting the amount of parameter change in the future, but it will also be possible to identify the location of the leak from the amount of change.

Research on functional area-specific technologies application of future C4I system for efficient battlefield visualization (미래 지휘통제체계의 효율적 전장 가시화를 위한 기능 영역별 첨단기술 적용방안)

  • Sangjun Park;Jungho Kang;Yongjoon Lee;Jeewon Kim
    • Convergence Security Journal
    • /
    • 제23권4호
    • /
    • pp.109-119
    • /
    • 2023
  • C4I system is an integrated battlefield information system that automates the five elements of command, control, communications, computers, and information to efficiently manage the battlefield. C4I systems play an important role in collecting and analyzing enemy positions, situations, and operational results to ensure that all services have the same picture in real time and optimize command decisions and mission orders. However, the current C4I has limitations whenever a new weapon system is introduced, as it only provides battlefield visualization in a single area focusing on the battlefield situation for each military service. In a future battlefield that expands not only to land, sea, and air domains but also to cyber and space domains, improved command and control decisions will be possible if organic data from various weapon systems is gathered to quickly visualize the battlefield situation desired by the user. In this study, the visualization technology applicable to the future C4I system is divided into map area, situation map area, and display area. The technological implementation of this future C4I system is based on various data and communication means such as 5G networks, and is expected to enable hyper-connected battlefield visualization that utilizes a variety of high-quality information to enable realistic and efficient battlefield situation awareness.

A Design and Implementation of Chick Incubation System Based on IoT

  • Sejong Lee;Sol Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • 제29권9호
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, we design and implement an Internet of Things (IoT)-based chick incubation system. The system consists of three key components: the IoT incubator, the IoT server system, and the smartphone application. The IoT incubator is composed of an Arduino board, temperature and humidity sensors, a temperature and humidity controller, a ventilation controller, and an egg turning controller. The temperature and humidity sensors measure the temperature and humidity inside the IoT incubator and send the data to the temperature and humidity controller on the Arduino board. Additionally, it provides the function of transmitting temperature, humidity, and control history data to the IoT server via WiFi. It also offers automatic control of ventilation, egg turning, and temperature and humidity on a daily basis. The IoT server system receives data from the incubator, stores it in a database, and provides query data upon request from the smartphone. The smartphone application retrieves historical data through the server and monitors the temperature and humidity data of the IoT incubator in real-time, controlling the IoT incubator to ensure that the set temperature and humidity ranges are maintained. If the temperature and humidity data deviate from the set ranges, it sends alarms and emergency messages to the user. The IoT-based chick incubation system developed in this paper is a low-cost model due to its reduced manufacturing cost, making it highly beneficial for self-sustaining poultry farms.

Design and Implementation of a Fault-Tolerant Caching System for Dynamic Heterogeneous Cache Server Networks (동적 이기종 캐시 서버 네트워크에서의 내결함성 캐싱 시스템 설계 및 구현)

  • Hyeon-Gi Kim;Gyu-Sik Ham;Jin-Woo Kim;Soo-Young Jang;Chang-Beom Choi
    • Journal of IKEEE
    • /
    • 제28권3호
    • /
    • pp.458-464
    • /
    • 2024
  • This study proposes a fault-tolerant caching system to address the issue of caching content imbalance caused by the dynamic departure and participation of cache servers in a heterogeneous cache server network, and validates it in both real and virtual environments. With the increase of large-scale media content requiring various types and resolutions, the necessity of cache servers as key components to reduce response time to user requests and alleviate network load has been growing. In particular, research on heterogeneous cache server networks utilizing edge computing and low-power devices has been actively conducted recently. However, in such environments, the irregular departure and participation of cache servers can occur frequently, leading to content imbalance among the cache servers deployed in the network, which can degrade the performance of the cache server network. The fault-tolerant caching algorithm proposed in this study ensures stable service quality by maintaining balance among media contents even when cache servers depart. Experimental results confirmed that the proposed algorithm effectively maintains content distribution despite the departure of cache servers. Additionally, we built a network composed of seven heterogeneous cache servers to verify the practicality of the proposed caching system and demonstrated its performance and scalability through a large-scale cache server network in a virtual environment.