• Title/Summary/Keyword: Real-time automated detection

Search Result 62, Processing Time 0.023 seconds

Realtime Monitoring System using AJAX + XML (AJAX+XML 기반의 모니터링 시스템)

  • Choi, Yun Jeong;Park, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2009
  • Nowadays, according to rapid development of computing environments, information processing and analysis system are very interesting research area. As a viewpoint of data preparation-processing-analysis in knowledge technology, the goal of automated information system is to satisfy high reliability and confidence and to minimize of human-administrator intervention. In addition, we expect the system which can deal with problem and abnormal error effectively as a fault detection and fault tolerance. In this paper, we design a monitoring system as follows. A productive monitoring information from various systems has unstructured forms and characteristics and crawls informative data by conditions and gathering rules. For representing of monitering information which requested by administrator, running-status can be able to check dynamically and systematic like connection/closed status in real-time. Our proposed system can easily correct and processing for monitoring information from various type of server and support to make objective judgement and analysis of administrator under operative target of information system. We implement semi-realtime monitering system using AJAX technology for dynamic browsing of web information and information processing using XML and XPATH. We apply our system to SMS server for checking running status and the system shows that has high utility and reliability.

Wireless Networked System for Transmission Path Self-Calibration of Laser Equipment (레이저 장비의 전송 경로 자가 교정을 위한 무선 네트워크 시스템)

  • Lee, Junyoung;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2020
  • IIoT stands for Industrial Internet of Things used in manufacturing, healthcare, and transportation in networked smart factories. Recently, IIoT's environment requires an automated control system through intelligent cognition to improve efficiency. In particular, IIoT can be applied to automatic calibration of production equipment for improved management in industrial environments. Such automation systems require a wireless network for transmitting industrial data. Self-calibration systems in laser transmission paths using wireless networks can save resources and improve production quality by real-time monitoring and remote control of laser transmission path. In this paper, we propose a wireless networked system for self-calibration of laser equipment that requires a laser transmission path, and we show the results of the prototype evaluation. The self-calibration system of laser equipment measures the coordinates of the laser points with sensors and sends them to the host using the proposed application protocol. We propose a wireless network service for the wired motor controller to align the laser coordinates. Using this wireless network, the host controls the motor by sending a control command of the motor controller in an HTTP message based on the received coordinate values. Finally, we build a prototype system of the proposed design to verify the detection performance and analyze the network performance.

A Machine Learning Approach for Stress Status Identification of Early Childhood by Using Bio-Signals (생체신호를 활용한 학습기반 영유아 스트레스 상태 식별 모델 연구)

  • Jeon, Yu-Mi;Han, Tae Seong;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Recently, identification of the extremely stressed condition of children is an essential skill for real-time recognition of a dangerous situation because incidents of children have been dramatically increased. In this paper, therefore, we present a model based on machine learning techniques for stress status identification of a child by using bio-signals such as voice and heart rate that are major factors for presenting a child's emotion. In addition, a smart band for collecting such bio-signals and a mobile application for monitoring child's stress status are also suggested. Specifically, the proposed method utilizes stress patterns of children that are obtained in advance for the purpose of training stress status identification model. Then, the model is used to predict the current stress status for a child and is designed based on conventional machine learning algorithms. The experiment results conducted by using a real-world dataset showed that the possibility of automated detection of a child's stress status with a satisfactory level of accuracy. Furthermore, the research results are expected to be used for preventing child's dangerous situations.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

A Study on Survivability of Node using Response Mechanism in Active Network Environment (액티브 네트워크 환경에서 대응 메커니즘을 이용한 노드 생존성에 관한 연구)

  • Yang, Jin-Seok;Lee, Ho-Jae;Chang, Beom-Hwan;Kim, Hyoun-Ku;Han, Young-Ju;Chung, Tai-Myoung
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.799-808
    • /
    • 2003
  • Existing security solutions such as Firewell and IDS (Intrusion Detection System) have a trouble in getting accurate detection rate about new attack and can not block interior attack. That is, existing securuty solutions have various shortcomings. Shortcomings of these security solutions can be supplemented with mechanism which guarantees an availability of systems. The mechanism which guarantees the survivability of node is various, we approachintrusion telerance using real time response mechanism. The monitoring code monitors related resources of system for survivability of vulnerable systm continuously. When realted resources exceed threshold, monitoring and response code is deployed to run. These mechanism guarantees the availability of system. We propose control mathod about resource monitoring. The monitoring code operates with this method. The response code may be resident in active node for availability or execute a job when a request is occurred. We suggest the node survivability mechanism that integrates the intrusion tolerance mechanism that complements the problems of existing security solutions. The mechanism takes asvantage of the automated service distribution supported by Active Network infrastructure instead of passive solutions. The mechanism takes advantage of the automated service distribution supported by Active Network infrastructure instead of passive system reconfiguration and patch.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Cost-Effective, Real-Time Web Application Software Security Vulnerability Test Based on Risk Management (위험관리 기반의 비용 효율적인 실시간 웹 애플리케이션 소프트웨어 보안취약점 테스팅)

  • Kumi, Sandra;Lim, ChaeHo;Lee, SangGon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.59-74
    • /
    • 2020
  • The web space where web applications run is the cyber information warfare of attackers and defenders due to the open HTML. In the cyber attack space, about 84% of worldwide attacks exploit vulnerabilities in web applications and software. It is very difficult to detect web vulnerability attacks with security products such as web firewalls, and high labor costs are required for security verification and assurance of web applications. Therefore, rapid vulnerability detection and response in web space by automated software is a key and effective cyber attack defense strategy. In this paper, we establish a security risk management model by intensively analyzing security threats against web applications and software, and propose a method to effectively diagnose web and application vulnerabilities. The testing results on the commercial service are analyzed to prove that our approach is more effective than the other existing methods.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.113-120
    • /
    • 2023
  • Smart farms are steadily increasing in research to minimize labor, energy, and quantity put into crops as IoT technology and artificial intelligence technology are combined. However, research on efficiently managing crop growth information in smart farms has been insufficient to date. In this paper, we propose a management technique that can efficiently monitor crop growth information by applying autonomous sensors to smart farms. The proposed technique focuses on collecting crop growth information through autonomous sensors and then recycling the growth information to crop cultivation. In particular, the proposed technique allocates crop growth information to one slot and then weights each crop to perform load balancing, minimizing interference between crop growth information. In addition, when processing crop growth information in four stages (sensing detection stage, sensing transmission stage, application processing stage, data management stage, etc.), the proposed technique computerizes important crop management points in real time, so an immediate warning system works outside of the management criteria. As a result of the performance evaluation, the accuracy of the autonomous sensor was improved by 22.9% on average compared to the existing technique, and the efficiency was improved by 16.4% on average compared to the existing technique.

Current status and future plans of KMTNet microlensing experiments

  • Chung, Sun-Ju;Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Yee, Jennifer C.;Zhu, Wei;Han, Cheongho;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Yongseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2018
  • We introduce a current status and future plans of Korea Microlensing Telescope Network (KMTNet) microlensing experiments, which include an observational strategy, pipeline, event-finder, and collaborations with Spitzer. The KMTNet experiments were initiated in 2015. From 2016, KMTNet observes 27 fields including 6 main fields and 21 subfields. In 2017, we have finished the DIA photometry for all 2016 and 2017 data. Thus, it is possible to do a real-time DIA photometry from 2018. The DIA photometric data is used for finding events from the KMTNet event-finder. The KMTNet event-finder has been improved relative to the previous version, which already found 857 events in 4 main fields of 2015. We have applied the improved version to all 2016 data. As a result, we find that 2597 events are found, and out of them, 265 are found in KMTNet-K2C9 overlapping fields. For increasing the detection efficiency of event-finder, we are working on filtering false events out by machine-learning method. In 2018, we plan to measure event detection efficiency of KMTNet by injecting fake events into the pipeline near the image level. Thanks to high-cadence observations, KMTNet found fruitful interesting events including exoplanets and brown dwarfs, which were not found by other groups. Masses of such exoplanets and brown dwarfs are measured from collaborations with Spitzer and other groups. Especially, KMTNet has been closely cooperating with Spitzer from 2015. Thus, KMTNet observes Spitzer fields. As a result, we could measure the microlens parallaxes for many events. Also, the automated KMTNet PySIS pipeline was developed before the 2017 Spitzer season and it played a very important role in selecting the Spitzer target. For the 2018 Spitzer season, we will improve the PySIS pipeline to obtain better photometric results.

  • PDF

The Development of Image Processing System Using Area Camera for Feeding Lumber (영역카메라를 이용한 이송중인 제재목의 화상처리시스템 개발)

  • Kim, Byung Nam;Lee, Hyoung Woo;Kim, Kwang Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • For the inspection of wood, machine vision is the most common automated inspection method used at present. It is required to sort wood products by grade and to locate surface defects prior to cut-up. Many different sensing methods have been applied to inspection of wood including optical, ultrasonic, X-ray sensing in the wood industry. Nowadays the scanning system mainly employs CCD line-scan camera to meet the needs of accurate detection of lumber defects and real-time image processing. But this system needs exact feeding system and low deviation of lumber thickness. In this study low cost CCD area sensor was used for the development of image processing system for lumber being fed. When domestic red pine being fed on the conveyer belt, lumber images of irregular term of captured area were acquired because belt conveyor slipped between belt and roller. To overcome incorrect image merging by the unstable feeding speed of belt conveyor, it was applied template matching algorithm which was a measure of the similarity between the pattern of current image and the next one. Feeding the lumber over 13.8 m/min, general area sensor generates unreadable image pattern by the motion blur. The red channel of RGB filter showed a good performance for removing background of the green conveyor belt from merged image. Threshold value reduction method that was a image-based thresholding algorithm performed well for knot detection.