• 제목/요약/키워드: Real-time PCR kit

검색결과 68건 처리시간 0.024초

Down-regulation of FRα Inhibits Proliferation and Promotes Apoptosis of Cervical Cancer Cells in Vitro

  • Bai, Li-Xia;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Chen;Zhou, Qin;Wang, Jin-Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5667-5672
    • /
    • 2014
  • Folate receptor alpha ($FR{\alpha}$) mediates folate uptake by endocytosis, and while folate is essential to DNA methylation and synthesis and may have an important role in proliferating cells. $FR{\alpha}$ is known to be expressed in rapidly proliferating cells, including many cancer cell lines, but there has been no systematic assessment of expression in cervical cancer cell lines. The aim of the present study was to evaluate the effects of $FR{\alpha}$ on proliferation and apoptosis of cervical cells and correlation mechanism. In this study, we investigated the biological function of $FR{\alpha}$ in Hela cells using RNA interference. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK8) assay, while cell cycling and apoptosis were assessed by flow cytometry, mRNA levels by real time-PCR and protein levels of $FR{\alpha}$, c-Fos and c-Jun by Western blotting. The results revealed that $FR{\alpha}$ was highly expressed in Hela cells and its silencing with a small interfering RNA (siRNA) inhibited cell proliferation and induced cell apoptosis, arresting the cell cycle in G0/G1 stages while decreasing the proportion in S and G2/M stages, and suppressed the expression levels of c-Fos and c-Jun. In conclusion, the results of this study indicated that $FR{\alpha}$ down-regulation might be capable of suppressing cervical cancer cell proliferation and promoting apoptosis. It suggested that $FR{\alpha}$ might be a novel therapeutic target for cervical cancer.

Fucoidan Suppresses Prostaglandin E2 Production and Akt Activation in Lipopolysaccharide-Stimulated Porcine Peripheral Blood Mononuclear Cells

  • Park, Geon-Tae;Ahn, Changhwan;Kang, Byeong-Teck;Kang, Ji-Houn;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제34권3호
    • /
    • pp.172-177
    • /
    • 2017
  • Fucoidan, a cell wall polysaccharide found in the brown seaweed, is reported to have broad-spectrum biological activities. The objectives of this study were to examine the effect of fucoidan on prostaglandin $E_2$ ($PGE_2$) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs) and to determine whether these effects are involved in Akt activation. The levels of $PGE_2$ production in the culture supernatants from PBMCs were determined by the enzyme-linked immunosorbent assay (ELISA) kit and the levels of COX-2 mRNA were measured by real time polymerase chain reaction (RT-PCR). Akt activity was determined by Western blot analysis. Fucoidan in LPS-$na{\ddot{i}ve}$ PBMCs has no effect on $PGE_2$ production and COX-2 mRNA expression. Furthermore, fucoidan does not affect Akt activation in LPS- $na{\ddot{i}ve}$ PBMCs. However, $PGE_2$ production and COX-2 mRNA expression on PBMCs were remarkably enhanced by LPS stimulation. Akt activity was also increased by LPS. Increasing effects of $PGE_2$ production and COX-2 mRNA expression in PBMCs induced by LPS were suppressed by addition of fucoidan. In addition, fucoidan reduced an increase in Akt activity in LPS-stimulated PBMCs. These results suggested that fucoidan exerts potent anti-inflammatory properties by suppression of $PGE_2$ production, COX-2 mRNA expression and Akt activation in LPS-stimulated PBMCs.

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

단치소요산(丹梔逍遙散)이 자외선을 조사한 피부진피세포의 활성 및 유전자발현에 미치는 영향 (Effects of Danchisoyo-san on UVB-induced Cell Damage and Gene Expression in Dermal Fibroblast)

  • 임현정;유동열
    • 대한한방부인과학회지
    • /
    • 제24권2호
    • /
    • pp.13-32
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Danchisoyo-san (DS) on cell damage and gene expression in UVB-exposed dermal fibroblast. Methods: To demonstrate the inhibitory effects of DS on aging of the skin, we used human dermal fibroblast(F6) and UVB light(30 mJ/$cm^2$) was used to damage to dermal fibroblast. We measured the nitrite production, LDH release, and gene expression in UVB-irradiated dermal fibroblast to elucidate the actionmechanism of DS. Also, we evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit, and gene expression (MMP-1, procollagen, c-fos, c-jun, NF-kB, Bcl-2, Bcl-xL, iNOS) were determined using real-time PCR. Results: 1. DS inhibited LDH-release, nitrite production in UVB-irradiated dermal fibroblast. 2. DS suppressed the gene expression of MMP-1 in UVB-irradiated dermal fibroblast. 3. DS increased the gene expression of procollagen in UVB-iradiated dermal fibroblast. 4. DS suppressed the gene expression of c-jun, c-fos, NF-kB, iNOS in UVBirradiated dermal fibroblast. 5. DS increased the gene expression of Bcl-2 in UVB-iradiated dermal fibroblast. 6. DS increased the cell proliferation of dermal fibroblast. Conclusions: From the results, we concluded DS increases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that DS has the antiwrinkle effects.

상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구 (Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells)

  • 이기전;김복규;길기정
    • 대한본초학회지
    • /
    • 제28권1호
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.

LINC00562 drives gastric cancer development by regulating miR-4636-AP1S3 axis

  • Lin Xu;Daiting Liu;Xun Wang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.197-208
    • /
    • 2023
  • Dysregulation of certain long non-coding RNAs may facilitate tumor initiation and progression. However, numerous carcinogenesis-related long noncoding RNAs have not been characterized. The goal of this study was to elucidate the role of LINC00562 in gastric cancer (GC). The expression of LINC00562 was analyzed using real-time quantitative PCR and Western blotting. The proliferative capacity of GC cells was determined using Cell Counting Kit-8 and colony-formation assays. The migration of GC cells were evaluated using wound-healing assays. The apoptosis of GC cells was assessed by measuring the expression levels of apoptosis-related proteins (Bax and Bcl-2). Xenograft models in nude mice were constructed for in vivo functional analysis of LINC00562. The binding relationship between miR-4636 and LINC00562 or adaptor protein complex 1 sigma 3 (AP1S3), obtained from public databases, was confirmed using dual-luciferase and RNA-binding protein immunoprecipitation experiments. LINC00562 was expressed in GC cells at high levels. Knockdown of LINC00562 repressed GC cell growth and migration, promoted apoptosis in vitro, and inhibited tumor growth in nude mouse models. LINC00562 directly targeted miR-4636, and miR-4636 depletion restored the GC cell behavior inhibited by LINC00562 absence. AP1S3, an oncogene, binds to miR-4636. MiR-4636 downregulation increased AP1S3 level, restoring GC cell malignant behaviors inhibited by AP1S3 downregulation. Thus, LINC00562 exerts carcinogenic effects on GC development by targeting miR-4636-mediated AP1S3 signaling.

NBCe1 Regulates Odontogenic Differentiation of Human Dental Pulp Stem Cells via NF-κB

  • Qin Li;Yanqin Ju;Changlong Jin;Li Liu;Shouliang Zhao
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.384-394
    • /
    • 2022
  • Background and Objectives: Dental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na+-coupled HCO3- transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms. Methods and Results: DPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 µM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation. Conclusions: NBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.

LPS에 의해 자극된 RAW264.7 대식세포에서 Rebaudioside A의 항염 효과 (Anti-inflammatory Effects of Rebaudioside A in LPS-stimulated RAW264.7 Macrophage Cells)

  • 조욱민;황형서
    • 대한화장품학회지
    • /
    • 제43권2호
    • /
    • pp.157-164
    • /
    • 2017
  • 스테비아(Stevia rebaudiana)는 남아메리카 지역이 원산지인 국화과 스테비아 속의 다년생 식물로 스테비올(steviol)을 기본 구조로 하는 다양한 배당체가 존재하며 스테비오사이드(stevioside)와 리바우디오사이드(rebaudioside) A 등이 주성분이다. 스테비올 배당체들은 설탕보다 단맛이 월등히 뛰어나 감미료로 널리 사용되어지고 있다. 최근 여러 논문들에서 스테비올 배당체들이 미백 및 항염 효과 뿐 아니라 피부장벽 타이트정션 단백질 조절에 연관되어 있다는 보고가 있었다. 따라서 본 연구에서는 스테비올 배당체인 리바우디오사이드 A의 항염 효과 연구를 통해 향후 아토피 피부염 개선 화장품 원료 개발 가능성을 확인하고자 하였다. 항염 연구를 위해 마우스 대식세포인 RAW264.7 세포를 이용하여 cell viability 및 염증 유발 사이토카인 mRNA 발현량을 분석하였다. 우선 cell viability 측정을 위해 cell counting kit-8 (CCK-8) assay를 수행하였고 세포독성이 없는 최대 농도를 $250{\mu}M$로 설정하여 이후 모든 실험을 진행하였다. 리바우디오사이드 A의 염증 조절 기능 연구는 주로 정량적 real-time RT-PCR 방법을 이용하였다. LPS에 의해 활성화된 RAW264.7 대식세포에서 리바우디오사이드 A 처리 결과 LPS 처리군 대비 iNOS 발현량은 약 47% 감소하였고, COX-2 또한 41% 감소하였다. 생성된 NO의 양 또한 농도 의존적으로 감소하였다. 대식세포를 LPS로 활성화시킨 조건에서 염증 관련 사이토카인 유전자인 interleukin (IL)-$1{\alpha}$, IL-$1{\beta}$, IL-6의 발현량 조절을 확인한 결과 사이토카인(IL-$1{\alpha}$, $1{\beta}$, 6) 발현이 LPS 처리군 대비 40%, 45%, 59%로 농도 의존적 유의성 있게 감소하였다. 결론적으로 스테비올 배당체인 리바우디오사이드 A는 NO 생성 및 사이토카인 분비 억제를 통해 염증 반응을 저해하였다. 이러한 리바우디오사이드 A의 신규 항염증 조절 기능을 통해 아토피성피부염 개선 소재로의 개발이 기대된다.

YBR의 간섬유화(肝纖維化)억제 효과(效果)에 관한 연구(硏究) (Inhibitory Effect of YBR on Hepatic Fibrogenesis)

  • 승현석;우홍정
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.314-330
    • /
    • 2010
  • Objective : This study was performed to investigate the anti-fibrogenic effect and changes of inflammation-related genes by YBR I and YBR II (YBR I: Arteisiae Capillaris Herba, Atractylodis Rhizoma Alba, Hoelen/ YBR II: YBR I +Sanguisorbae Radix, Biotae Cacumen, Cirsii Japonici Herba) on HSC(hepatic stellate cells)-T6 and TAA-induced rat liver tissue. Materials and Methods : HSC-T6 were treated with various concentrations of distilled-water extract YBR I and YBR II extract for 24, 48 and 72 hours. After the treatment, cell viability, proliferation, procollagen levels and IL-6 levels were measured by using MTT Assay, BrdU Assay, Procollagen Type 1 C-peptide EIA kit, and Murine IL-6 ELISA Development kit. Rat liver fibrosis was induced by intraperitoneal TAA injection of 150mg/kg 3 times a week for 6 weeks. After the treatment, body weight, liver & spleen weights, liver function test, complete blood cell count and change of portal pressure were studied. In addition, gene expressions of ASMA, IL-6, MMP-2, TIMP-1 and TIMP-2, all of which are known to be associated with liver fibrosis, were analyzed by using Real-Time PCR. After YBR I and YBR IItreatment, percentages of collagen in TAA-induced rat liver tissue were measured. Results : The viability and proliferation of the HSC-T6 decreased as the concentration increased. The production of procollagen decreased as the concentration increased. The production of IL-6 was little influenced by YBR I and YBR II. There was no difference in rat body weight between the TAA-only group and the YBR groups. Compared with rat liver weight of TAA-only group, that of the YBR groups increased. In the YBR I group, the serum level of AST elevated by TAA injection significantly decreased and in the YBR I and II group, the serum level of ALP and ALT elevated by TAA injection decreased. In the YBR I group, white blood cell count elevated by TAA injection decreased but platelets increased. In the YBR I group, the portal pressure elevated by TAA injection significantly decreased. Decreases in the gene expression of ASMA and MMP-2 were observed in the YBR I group. The gene expression of IL-6 was little influenced by YBR I and YBR II -treated groups. In the histological finding, TAA injections caused severe fibrosis, but YBR I and YBR II treatment significantly reduced the amounts of hepatic collagens. Conclusions : These results suggest that YBR I and II have inhibitory effects on the hepatic fibrogenesis.

Sca-1+골수조혈세포에서 JAK2/STAT5/GATA-1 신호전달 경로를 통한 다채, 도두 그리고 두 조합물에 의한 조혈증진 조절에 관한 연구 (Studies on the regulation of Hematopoietic enhancement of Brassica campestris var narinosa., Canavalia gladiata DC semen and their combinational prescription via Jak2/STAT5/GATA1 Pathway in Sca-1+ hematopoietic stem cells)

  • 김근회;김승형;조인식;김한영;김동선;이영철
    • 대한본초학회지
    • /
    • 제28권4호
    • /
    • pp.7-16
    • /
    • 2013
  • Objectives : Brassica campestris var narinosa (BCN), Canavalia gladiata DC semen (CGD) and their combinational prescription (BCN+CGD) have been use to demonstrate to regulate hematopoiesis. In the current study, we investigated whether Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription is related to hemato-potentiating function using Sca-$1^+$ hematopoietic stem cells (Sca-$1^+HSCs$) as a testing system. Methods : Sca-$1^+HSCs$ isolated from femur in C57bl/6 mice with leukopenia and thrombocytopenia induced by cyclophosphamide (CTX). Then, Real-time PCR was performed to measure the mRNA expression, ELISA and haematopoiesis-related gene (EPO, TPO, IL-3, SCF, c-kit, GM-CSF), the phosphorylation of JAK2, GATA-1 and STAT-5a/b were observed by western blot, and the numbers of $CD117^+/Sca-1^+$ cell and the number of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E), semisolid clonogenic assay was performed. Result : When Sca-$1^+HSCs$ were treated with Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription with rIL-3/rSCF, the expression of haematopoiesis-related (EPO, TPO, IL-3, SCF, c-kit, and GM-CSF) were significantly increased at the levels of mRNA as well as production in Sca-$1^+HSCs$. Additionally, CGS enhanced phosphorylation of JAK2, GATA-1, and signal transducer and activator of transcription-5a/b (STAT-5a/b) in Sca-$1^+HSCs$. Furthermore, their combinational prescription (BCN+CGD) significantly enhanced the growth rate of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E) in vitro. Conclusion : These result suggest that Brassica campestris var narinosa (BCN) and Canavalia gladiata DC have hematopoietic enhancement via hematopoietic cytokine-mediated JAK2/GATA-1/STAT-5a/b pathway, and their combinational prescription (BCN+CGD) has superior hematopoietic enhancement to those of individual extracts.