• Title/Summary/Keyword: Real-time Ocean Environment

Search Result 151, Processing Time 0.023 seconds

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

Noise-induced Stress Response on Cortisol, Glucose, albumin and Glucocorticoid Receptor Expression in the Japanese eel, Anguilla japonica (소음스트레스에 대한 뱀장어의 코티졸, 글루코스, 알부민과 Glucocorticoid Receptor 유전자 발현 연구)

  • Park, Young-Chul;Kang, Yong-Jin;Jeon, Hyoung-Joo;Han, Kyung-Nam;Baek, Jae-Min;Lee, Wan-Ok;Kim, Jin-Hyoung
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.853-860
    • /
    • 2011
  • We measured blood plasma parameters(cortisol, glucose, albumin) and glucocorticoid receptor(GCR) gene expression level of the Japanese eel(Anguilla japonica) exposed to an explosion noise for an hour in order to evaluate the effects of noise stress and to explore the possibility of these parameters as biomarkers on noise stress for one of this valuable aquaculture species. Plasma cortisol and glucose reached high levels with significant differences compared to the control group, whereas albumin showed a low value after 1 h of exposure. In addition, tissue distribution of GCR gene expression was studied by real-time RT-PCR of ten organs(brain, eye, gill, gonad, heart, intestine, kidney, liver, muscle and skin). Liver showed the highest level of expression in the control followed by gill, muscle and intestine. A time-course study revealed induction in liver, gill, muscle and intestine after 30 min or 1 h of noise exposure.

Analysis and Design of Common Platform Core Technology for Maritime Autonomous Surface Ships (자율운항선박의 공통플랫폼 요소기술 분석 및 설계)

  • Jeong, Seong-hoon;Shim, Joon-Hwan;Choi, Kwan-seon;Son, Young-chang
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • The maritime autonomous surface ship is automatically collects and manages various information necessary for the operation to minimize human intervention and safely perform the mission assigned to the ship. And the ship may autonomously operate the partial or entire route to the destination determined by the ship himself. This ship navigation technology allows partially remote control the ship to be operated if necessary. The maritime autonomous surface ship (MASS) should collect and manage signals of various navigation communication equipments and engines mounted on the ship for safe operation. This requires a common platform technology. In this paper, we propose a common platform that is the core of smart ship implementation. Territorial authorities and ships are connected by satellite or terrestrial communication. In such a communication environment, information is exchanged smoothly in real time. This allows the onshore authorities to monitor ships and provide remote control to enable safe vessel navigation at sea.

A Study on Gas Hydrate Replacement Method for Organic Methane Recovery in Ocean Sediment (해저 퇴적토 내 유기성 메탄 회수를 위한 가스하이드레이트 치환기법 연구)

  • Shin, Dong Hyung;Park, Dae Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.5-10
    • /
    • 2018
  • In this study, the effect of physico-chemical factors (e.g., pressure, electrolyte, and organic matter) in the gas hydrate deposit on CH4-CO2 replacement process was investigated experimentally. The higher initial pressure during gas injection led the higher reaction rate at the first time, but finally it did not. Electrolytes and organic matter have some effects on reforming process after dissociation of gas hydrate. It is expected that further research using real marine sediments with actual gas hydrate will enable the development of technologies applicable to the characteristics of domestic seabed geology. Ultimately, it is expected that it will be possible to recover and utilize methane as an organic resource through application of domestic gas hydrate deposit in the Ulleung Basin, East Sea.

Designing Bigdata Platform for Multi-Source Maritime Information

  • Junsang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.111-119
    • /
    • 2024
  • In this paper, we propose a big data platform that can collect information from various sources collected at ocean. Currently operating ocean-related big data platforms are focused on storing and sharing created data, and each data provider is responsible for data collection and preprocessing. There are high costs and inefficiencies in collecting and integrating data in a marine environment using communication networks that are poor compared to those on land, making it difficult to implement related infrastructure. In particular, in fields that require real-time data collection and analysis, such as weather information, radar and sensor data, a number of issues must be considered compared to land-based systems, such as data security, characteristics of organizations and ships, and data collection costs, in addition to communication network issues. First, this paper defines these problems and presents solutions. In order to design a big data platform that reflects this, we first propose a data source, hierarchical MEC, and data flow structure, and then present an overall platform structure that integrates them all.

Temporal Variation of Atmospheric Radon-222 and Gaseous Pollutants in Background Area of Korea during 2013-2014

  • Bu, Jun-Oh;Song, Jung-Min;Kim, Won-Hyung;Kang, Chang-Hee;Song, Sang-Keun;Williams, Alastair G.;Chambers, Scott D.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • Real-time monitoring of hourly concentrations of atmospheric Radon-222 ($^{222}Rn$, radon) and some gaseous pollutants ($SO_2$, CO, $O_3$) was performed throughout 2013-2014 at Gosan station of Jeju Island, one of the cleanest regions in Korea, in order to characterize their background levels and temporal variation trend. The hourly mean concentrations of radon and three gaseous pollutants ($SO_2$, CO, $O_3$) over the study period were $2216{\pm}1100mBq/m^3$, $0.6{\pm}0.7ppb$, $211.6{\pm}102.0ppb$, and $43.0{\pm}17.0ppb$, respectively. The seasonal order of radon concentrations was as fall ($2644mBq/m^3$)$${\sim_\sim}$$winter ($2612mBq/m^3$)>spring ($2022mBq/m^3$)>summer ($1666mBq/m^3$). The concentrations of $SO_2$ and CO showed similar patterns with those of radon as high in winter and low in summer, whereas the $O_3$ concentrations had a bit different trend. Based on cluster analyses of air mass back trajectories, the air mass frequencies originating from Chinese continent, North Pacific Ocean, and the Korean Peninsula routes were 30, 18, and 52%, respectively. When the air masses were moved from Chinese continent to Jeju Island, the concentrations of radon and gaseous pollutants ($SO_2$, CO, $O_3$) were relatively high: $2584mBq/m^3$, 0.76 ppb, 225.8 ppb, and 46.4 ppb. On the other hand, when the air masses were moved from North Pacific Ocean, their concentrations were much low as $1282mBq/m^3$, 0.24 ppb, 166.1 ppb, and 32.5 ppb, respectively.

HIL based LNGC PMS Simulator's Performance Verification (HIL 기반 LNGC PMS 시뮬레이터의 성능 검증)

  • Lee, Kwangkook;Park, Jaemun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.219-220
    • /
    • 2016
  • A power management system (PMS) has been an important part in a ship integrated control system. To evaluate a PMS for a liquefied natural gas carrier (LNGC), this research proposes a real-time hardware-in-the-loop simulation (HILS), which is composed of major component models such as turbine generator, diesel generator, governor, circuit breaker, and 3-phase loads on MATLAB/Simulink. In addition, FPGA based control console and main switchboard (MSBD) are constructed in order to develop an efficient control and a similar real environment in an LNGC PMS. A comparative study on the performance evaluation of PMS functions is conducted using two test cases for sharing electric power to consumers in an LNGC. The result shows that the proposed system has a high verification capability for the operating function and failure insertion evaluation as a PMS simulator.

  • PDF

An Algorithm for Submarine Passive Sonar Simulator (잠수함 수동소나 시뮬레이터 알고리즘)

  • Jung, Young-Cheol;Kim, Byoung-Uk;An, Sang-Kyum;Seong, Woo-Jae;Lee, Keun-Hwa;Hahn, Joo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.472-483
    • /
    • 2013
  • Actual maritime exercise for improving the capability of submarine sonar operator leads to a lot of cost and constraints. Sonar simulator maximizes the capability of sonar operator and training effect by solving these problems and simulating a realistic battlefield environment. In this study, a passive sonar simulator algorithm is suggested, where the simulator is divided into three modules: maneuvering module, noise source module, and sound propagation module. Maneuvering module is implemented in three-dimensional coordinate system and time interval is set as the rate of vessel changing course. Noise source module consists of target noise, ocean ambient noise, and self noise. Target noise is divided into modulated/unmodulated and narrowband/broadband signals as their frequency characteristics, and they are applied to ship radiated noise level depending on the vessel tonnage and velocity. Ocean ambient noise is simulated depending on the wind noise considering the waveguide effect and other ambient noise. Self noise is also simulated for flow noise and insertion loss of sonar-dome. The sound propagation module is based on ray propagation, where summation of amplitude, phase, and time delay for each eigen-ray is multiplied by target noise in the frequency domain. Finally, simulated results based on various scenarios are in good agreement with generated noise in the real ocean.

Analysis of Water Temperature Variations in Coastal Waters of the Korean Peninsula during Typhoon Movement (태풍 이동시 한반도 해역별 수온 변동 분석)

  • Juyeon Kim;Seokhyun Youn;Myunghee Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we analyzed the water temperature variability in the sea area of the Korean Peninsula in August, before and after the typhoon inflow through Typhoon Soulik, the 19th in 2018 that turned right around the Korean Peninsula and passed through the East Sea, and Typhoon Bavi, the eighth in 2020 that advanced north and passed through the Yellow Sea. The data used in this study included the water temperature data recorded in the real-time information system for aquaculture environment provided by the National Institute of Fisheries Science, wind data near the water as recorded by the automatic weather system, and water temperature data provided by the NOAA/AVHRR satellite. According to the analysis, when typhoons with different movement paths passed through the Korean Peninsula, the water temperature in the East Sea repeatedly upwelled (northern winds) and downwelled (southern winds) depending on the wind speed and direction. In particular, when Typhoon Soulik passed through the East sea, the water temperature dropped sharply by around 10 ℃. When Typhoon Bavi passed through the center of the Yellow Sea, the water temperature rose in certain observed areas of the Yellow Sea and even in certain areas of the South Sea. Warmer water flowed into cold water regions owing to the movement of Typhoon Bavi, causing water temperature to rise. The water temperature appeared to have recovered to normal. By understanding the water temperature variability in the sea area of the Korean Peninsula caused by typhoons, this research is expected to minimize the negative effects of abnormal climate on aquaculture organisms and contribute to the formulation of damage response strategies for fisheries disasters in sea areas.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.