• Title/Summary/Keyword: Real-time Monitoring and Control

Search Result 972, Processing Time 0.029 seconds

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

A study on implementation and performance evaluation of the TCN/WTB for KHST (고속전철 제어 시스템을 위한 TCN/WTB 구현 및 성능 평가에 관한 연구)

  • 심세섭;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.155-155
    • /
    • 2000
  • A high performance control and monitoring system for a high speed railway train requires a reliable the real-time communication network. TCN/WTB is designed for the data transmission over the train bus, and UIC556 defines that all the data be transmitted over TCN/WTB. This paper evaluates the performance of the link layer of WTB(Wired Train Bus). The evaluated results can be used for the selection of parameters for the sporadic message data.

  • PDF

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

Weight Control Program through the Fortification of Food Consumption Monitoring on Obese Female College Students - Using Smart-Phone with Real Time Communication Application - (비만 여대생을 대상으로 음식섭취 모니터링 강화를 통한 체중조절 - 스마트폰의 실시간 커뮤니케이션 어플리케이션을 이용하여 -)

  • Kim, Young-Suk;Shin, Jae-Kyung;Hong, In-Sun;Kim, Seon-Hee;Chang, Un-Jae
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.6
    • /
    • pp.697-705
    • /
    • 2011
  • This study was conducted to investigate the effects of real time communication digital photography method using Kakao Talk application in smart-phone for the fortification of food consumption monitoring and weight reduction. Thirty-four female college students were randomly assigned to the camera-phone (CP) group or smart-phone (SP) group. Each group participated in the weight control program for 8 weeks. The mean energy intake of CP group during program was 1353.5 kcal and the SP group consumed 1289.2 kcal. The total energy intake of both groups was significantly decreased during the program. The CP group lost 1.9 kg of body weight and 1.9% of body fat and the SP group lost 4.3 kg of body weight and 3.0% of body fat. The body weight was significantly decreased in the SP group compared to the CP group. The triglyceride and total cholesterol, and LDL-cholesterol level of SP group were significantly decreased during the program. However, there were no significant changes in CP group during the program. Also there were no significant changes in lipid profile between two groups. In this study, it is considered that real time communication digital photography method using Kakao Talk application in smart-phone might influence weight control through a trained consumption monitoring. Therefore, smart-phone can lead individuals to rely more heavily on easy-to-monitor visual cues.

Real-Time Monitoring and Control System of Server Room based on IoT (IoT를 기반으로 하는 서버 룸 실시간 모니터링 및 제어 시스템)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.7-13
    • /
    • 2020
  • In this paper, we propose a system that monitors and controls the environment of a server room in real-time based on IoT. Recently, as the information society has been maximized, the damage has been significant when the computer system is down. In particular, damage such as a fire in the server room leads to loss of data and data recovery becomes impossible. In order to reduce such damage, a node capable of real-time monitoring using an IoT system was proposed. In addition, we proposed a coordinator node that can collect and monitor node information. In order to verify that the proposed system works, we have developed software that can control node monitoring and air conditioning. As a result of the experiment, we confirmed that the proposed system detects fire and controls the air conditioner.

Design and Development of an Advanced Real-Time Satellite Simulator

  • Kang, Ja-Young;Kim, Jae-Moung;Chung, Seon-Jong
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.1-16
    • /
    • 1995
  • An advanced real-time satellite simulator (ARTSS) has been developed to support the ground operations activities of the ETRI satellite control system, such as testing of the system facilities, validation of flight control procedures, verification of satellite commands as well as training of the ground operators. The design of ARTSS is based on the top-down approach and makes use of a modular programming to ensure flexibility in modification and expansion of the system. Graphics-based monitoring and control facilities enhance the satellite simulation environment. The software spacecraft model in ARTSS simulates the characteristics of a geostationary communication satellite using a momentum bias three-axis stabilization control technique. The system can be also interfaced with a hardware payload subsystem such as Ku-band communication transponder to enhance the simulator capability. Therefore, ARTSS is a high fidelity satellite simulation tool that can be used on low-cost desk top computers. In this paper, we describe the design features, the simulation models and the real-time operating functions of the simulator.

  • PDF

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Design and Implementation of DCS Terminal Remote Monitoring Board using Wire and Wireless Communication (유무선 통신을 이용한 DCS 터미널 원격 감시 보드 설계 및 구현)

  • KPark, Hae-Dong;Kang, Jeon-Wook;Kim, Jae-Hwan;Lee, Se-Hoon
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • In this paper, we designed and implemented the DCS(Distributed Control System) terminal remote monitoring board for build total unified management system based wireless communication on automatic control system fields. Also, it tested and evaluated for check an usability and performance. The board monitored relay and fuse status at power management room real-time. Therefore, we expected economic effects extend relay life-time that pre-detected errors and prevented relay fault.

  • PDF

The Hybrid Lighting Control System on Multiple Sensor (다중센서 기반의 하이브리드 조명제어 시스템)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, we propose the hybrid lighting control system on multiple sensor. The proposed hybrid lighting control system was designed for management and control of street lightings by configured as the data display part of integration-interworking part, the data conversion-processing part of integrated management part, and the communication part of gateway system. The data are implemented to designing the DB to enable to storage in real-time by enable to monitoring by wireless remote control and schedule set. As a result of the efficiency verification of the proposed hybrid lighting control system, the hybrid lighting control system be to the real-time monitoring and remote lighting control was possible, because to peristalsis with smart devices and portable PC etc., and it could be obtained the effect of energy and electricity, communication cost reduction.