• Title/Summary/Keyword: Real-Time Navigation

Search Result 987, Processing Time 0.023 seconds

Development of Real-Time Control Architecture for Autonomous Navigation of Powered Wheelchair (전동휠체어의 자유주행을 위한 실시간 제어 구조의 개발)

  • 김병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.940-946
    • /
    • 2004
  • In this paper, an efficient real-time control architecture for autonomous navigation of powered wheelchair is developed. Since an advanced intelligent wheelchair requires real-time performance, the control software architecture of powered wheelchair is developed under Linux real-time extension Real-time Application Interface (RTAI). A hierarchical control structure for autonomous navigation is designed and implemented using real-time processe and interrupts handling of sensory perception based on slanted surface LRF, emergency handling capability, and motor control with 0.1 msec sampling time. The performance of our powered wheelchair system with the implemented control architecture for autonomous navigation is verified via experiments in a corridor.

Representing Navigation Information on Real-time Video in Visual Car Navigation System

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.365-373
    • /
    • 2007
  • Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

A Study on Development of Video Navigation System with real-time GPS Information

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.95-99
    • /
    • 2018
  • This research is related to GPS(global positioning system) enabled device navigation service and consists of two parts. The first is the logic that records the route guidance video and records GPS information in time, and the second is the logic that outputs the created video data based on real time GPS. The recording logic first determines the origin and destination, records the video from the origin to the destination and it adjusts the speed of the image in a specific area so that the user can see it easily. And insert ancillary information and advertisements that can help guide the route. In the output logic, we provide navigation services using the video and GPS data tables we created, and it receives user's GPS information in real time and corrects it based on the recent user location to reduce errors. This provides local guidance services to people who lack language skills like foreigners.

Development of 3D Car Navigation System Using Image-based Virtual Environment (실사기반 가상환경기술을 이용한 차량용 3차원 네비게이션 시스템 개발)

  • Kim Chang-Hyun;Lee Wan-Bok
    • Journal of Game and Entertainment
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • Objective of this study is to develop a 3D car navigation system that shows the driving direction to a destination through real-time 3-D panoramic views of the route. For the purpose, a new searching process was established to find the optimal driving direction based on the driver's current location and the real-time traffic situation and the TIP (tour into the picture) method was extended to implement a wide virtual environment. A virtual environment was built up by applying the extended TIP method to the panoramic images taken at a constant distance from a real road, and then, displayed 3-D navigation as clear as the real images. The car navigation system developed in this study provides the optimal driving direction and real-time traffic situation using 2-D navigation module and 3D navigation module.

  • PDF

Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

  • Shin, Kihae;Oh, Hyungjik;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

A Dynamic Modeling of 6×6 Skid Type Vehicle for Real Time Traversability Analysis over Curved Driving Path (곡선주행 실시간 주행성 분석을 위한 스키드 차량의 동역학 모델링)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.359-364
    • /
    • 2012
  • Real-Time Traversability should be analyzed from the equiped sensors' data in real time for autonomous outdoor navigation. However, it is difficult to find out such traversability that considers the terrain roughness and the vehicle dynamics especially in case of skid type vehicle. The traversability based on real time dynamic analysis was proposed to solve such problem but in navigation with strait driving path. To adapt the method into the navigation with curved driving path, a path following controller should be incorporated into the dynamic model even though it cause the real time problem. In this paper, a dynamic model is proposed to solve the real time problem in the traversability analysis based on real time dynamic simualtion. The dynamic model contains the control dummy which is connected to the vehicle body with a universal joint to follow the curved path without controller. Simulation and experimental results on $6{\times}6$ articulated unmanned ground vehicle demonstrate the method's effectiveness and applicability into the traversability analysis on terrain with bumps.