• 제목/요약/키워드: Real-Time Controller

검색결과 1,416건 처리시간 0.022초

LabVIEW의 모델기반 제어기 설계와 Compact RIO를 이용한 직류전동기 구동 시스템 (DC Motor Drive System Using Model Based Cotroller Design of LabVIEW and Compact RIO)

  • 지준근
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.352-359
    • /
    • 2008
  • 본 논문에서는 모델기반의 제어기 설계 프로그램인 National Instruments(NI)사의 System Identification Toolkit과 Control Design Toolkit, Simulation module을 사용하여 기존의 제어기 설계방식보다 쉽고 편리하게 제어기를 설계할 수 있었다. 직류전동기의 속도제어시스템을 구현하기 위해서 하드웨어는 NI사에서 제공하는 실시간 제어기(Real-Time Controller:RT) CompactRIO를 사용하였다. 먼저는, 테스트 입력 신호를 전동기에 인가하고 얻은 출력신호를 통해 제어대상 플랜트인 직류전동기 구동시스템의 전달함수를 구할 수 있었다. 다음으로는 원하는 제어응답성능을 갖는 극점, 영점 제어기를 설계한 후, 모의실험을 통해 속도제어응답을 확인할 수 있었고, 실시간 프로그램으로 다운로드하여 실제 전동기 구동시스템의 실험을 통해서 설계된 속도제어기의 응답 결과를 모의실험과 비교하여 검증하였다.

Verification of a hybrid control approach for spacecraft attitude stabilization through hardware-in-the-loop simulation

  • Kim, Sung-Woo;Park, Sang-Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.32.2-32.2
    • /
    • 2011
  • State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.

  • PDF

산업용 6관절 로봇의 원격제어를 위한 실시간 병렬데이터통신 인터페이스 (Development of Realtime Parallel Data Communication Interface for Remote Control of 6-DOF Industrial Robot)

  • 최명환;이우원
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.97-103
    • /
    • 2001
  • This paper presents the development of the I/O Interface for the real time parallel data communication between controller of a six-axis industrial robot(CRS-A460) and an external computer. The proposed I/O Interface consists of the hardware I/O interface and the software that is downloaded to the robot controller and executed by the controller operating system. The constitution of the digital I/O Port for CRS-A460 robot controller and the digital I/O board for IBM-PC are presented as well as the Process Control Program of the robot controller. The developed protocol for the parallel data communication is described. The data communication is tested, and the performance is analysed. In particular, it is shown that the real-time constraint of the robot controller process is satisfied.

  • PDF

덕트내 능동소음 제어기의 실시간 구현 (Real-Time Implementation of the Active adaptive noise Controller in Duct)

  • 고석용;이강욱;정양웅;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.378-381
    • /
    • 1991
  • In this paper, the active noise controll system in duct is analyzed with real time implementation. The primary noise signal detected by microphone is modeled using adaptive algorithm and the secondary signal which has the same amplitude and $180^{\circ}$ phase shift with the primary noise signal is generated in the controller. The signal processor DSP56001 is used to implement the real-time controller and the experimental results shows that our system can reduce the noise level in duct to $20{\sim}40$ [db].

  • PDF

실시간 스프링백 예측을 통한 보의 3점굽힘 적응제어기 설계 (Adaptive Three-Point Bending Controller Through Real-Time Springback Estimation for Beams)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.62-68
    • /
    • 2000
  • In order to automate straightening process of deflected beams an adaptive three-point bending controller is studies which estimates and controls springback of beams under three-point bending. An analytical load-deflection model for three-point bending of beams with circular cross sections is derived nondimensionally. In spite of variation of material and process parameters this model can be applied to springback estimation by measuring real-time values of reactive load and deflection of the beam. A hydraulic punch stroke controller is designed to take real-time controls of the permanent deflection of the beam. The validity of the proposed system is verified through experiments.

  • PDF

DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계 (Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot)

  • 차보남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

수평 머시닝 센터의 준 정적 오차의 실시간 보정 (Real time compensation for quasistatic errors of a horizantal machining center)

  • 양승한
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

Validation of model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.259-273
    • /
    • 2023
  • Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.

CAN과 RTOS를 내장한 소형 실시간 시스템 설계 기법 (Design Scheme of A Micro Real-Time Control System with CAN and RTOS)

  • 임영규;김동성
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.207-215
    • /
    • 2014
  • 본 논문은 초소형 센서노드(이하 노드)에서 인터럽트 처리와 데이터 전송에 대한 지연에 대한 문제들을 해결하기 위해 Micro Real-Time Control System (MRTCS)을 제안한다. MRTCS은 제어노드와 Controller Area Network (CAN) 기반의 노드로 구성되어졌다. 제어노드는 소형 마이크로 제어기 (sMCU)에 Real-Time Operating System (RTOS)를 내장하여 설계하였다. 노드들은 sMCU 없는 CAN 기반의 디바이스이며, 다중 디지털 입출력과 CAN 제어기를 가지고 있다. 소형 실시간 시스템 설계를 위해, 오픈소스인 OCTAVE v3.6.4를 이용하여 시스템 성능에 대한 모의실험을 실시하였다. 모의실험을 통해 제안된 설계 기법을 이용할 경우 인터럽트 처리와 데이터 전송에 대한 지연이 감소하여 시스템 성능이 증가함을 알 수 있었다. MRTCS이 다양한 실시간 제어 시스템에 적용 가능함을 검증하였다.

RVEGA SMC를 이용한 Ball-Beam 시스템의 안정화 (Stabilization of Ball-Beam System using RVEGA SMC)

  • 김태우;이준탁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1327-1334
    • /
    • 1999
  • The stabilization control of ball-beam system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of classical methods such as the PID and the full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Therefore, in this paper, three improved design techniques of stabilization controller for a ball-beam system were proposed. These parameter tuning methods in the double PID controller(DPIDC), the FSFC and the a sliding mode controller(SMC) were dependent upon the Real Value Elitist Genetic Algorithm (RVEGA). Finally, by applying the DPIDC, the FSFC and the Real Variable Elitist Genetic Algorithm based Sliding Mode Control(RVEGA SMC) to the stabilizations of a ball-beam system, the performances of the RVEGA SMC technique were showed to be superior to those of two other type controllers.

  • PDF