• Title/Summary/Keyword: Real-Time Analysis

Search Result 6,721, Processing Time 0.038 seconds

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

Path Collision-aware Real-time Link Scheduling for TSCH Wireless Networks

  • Darbandi, Armaghan;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4429-4445
    • /
    • 2019
  • As low-power and low-rate WSNs are being widely used for industrial applications, the scheduling of such applications becomes a critical issue to guarantee meeting the stringent requirements of determinism and tight latencies. This paper studies the link scheduling problem for real-time industrial applications in time-slotted channel hopping (TSCH) networks. We propose a heuristic algorithm for centralized link scheduling referred to as path-collision aware least laxity first (PC-LLF) algorithm, which dynamically prioritizes the packets based on the laxity time to the end-to-end deadlines and the amount of collisions that messages might deal with along their designated paths to the destination device. We propose schedulability analysis of real-time applications scheduled under our prioritization approach over TSCH networks, based on the literature on real-time schedulability analysis of multiprocessors and distributed systems. We show that our methodology provides an improved schedulability condition with respect to the existing approaches. Performance evaluation studies quantify to quantify the performance of our proposed approach under a variety of scenarios.

Estimating long-term sustainability of real-time issues on portal sites (포털사이트 실시간이슈 지속가능성 평가)

  • Chong, Min-Young
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.255-260
    • /
    • 2019
  • Real-time search keywords are not only limited to search keywords that are rapidly increasing interest in real-time, but also have a limitation that they are difficult to determine the sustainability as there is a difference in ranking between portal sites. Estimating sustainability for real-time search keywords is significant in terms of overcoming these limitations and providing some predictability. In particular, long-term search keywords that last for more than a month are of high value as long-lasting social issues. Therefore, in this paper, we analyze the interest based on the ranking of the real-time search keywords and the duration based on sustained weeks, days and hours of real-time search keywords by each portal site and the integrated portal site, and then estimating sustainability based on high level of interest and duration, and present a method to derive real-time search issues with high long-term sustainability.

Study on the Enumeration of Legionella in Environmental Water Samples Using Real-time PCR (Real-time PCR을 이용한 환경 중 물 시료의 레지오넬라 분석법 연구)

  • Lee, Jung-Hee;Park, Myoung-Ki;Kim, Yun-Sung;Yun, Hee-Jeong;Lee, Chang-Hee;Jeong, Ah-Yong;Yoon, Mi-Hye
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.511-519
    • /
    • 2019
  • Objectives: The standard method for the enumeration of environmental Legionella is culturing, which has several disadvantages, including long incubation and poor sensitivity. The purpose of this study is to demonstrate the usefulness of real-time PCR and to improve the standard method. Methods: In 200 environmental water samples, a real-time PCR and culture were conducted to detect and quantify Legionella. Using with the results of the survey, we compared the real-time PCR with the culture. Results: Each real-time PCR assay had 100% specificity and excellent sensitivity (5 GU/reaction). In the culture, 36 samples were positive and 164 samples were negative. Based on the results of the culture, real-time PCR showed a high negative predictive value of 99%, 35 samples were true positive, 105 samples were true negative, 59 samples were false positive and one sample was a false negative. Quantitative analysis of the two methods indicated a weak linear correlation ($r^2=0.29$, $r^2=0.61$, respectively). Conclusions: Although it is difficult to directly apply quantitative analysis results of real-time PCR in the enumeration of environmental Legionella, it can be used as a complementary means of culturing to rapidly screen negative samples and to improve the accuracy of diagnosis.

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF

Logical Analysis of Real-time Discrete Event Control Systems Using Communicating DEVS Formalism (C-DEVS형식론을 이용한 실시간 이산사건 제어시스템의 논리 해석 기법)

  • Song, Hae Sang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.35-46
    • /
    • 2012
  • As complexity of real-time systems is being increased ad hoc approaches to analysis of such systems would have limitations in completeness and coverability for states space search. Formal means using a model-based approach would solve such limitations. This paper proposes a model-based formal method for logical analysis, such as safety and liveness, of real-time systems at a discrete event system level. A discrete event model for real-time systems to be analyzed is specified by DEVS(Discrete Event Systems Specification) formalism, which specifies a discrete event system in hierarchical, modular manner. Analysis of such DEVS models is performed by Communicating DEVS (C-DEVS) formalism of a timed global state transition specification and an associated analysis algorithm. The C-DEVS formalism and an associated analysis algorithm guarantees that all possible states for a given system are visited in an analysis phase. A case study of a safety analysis for a rail road crossing system illustrates the effectiveness of the proposed method of the model-based approach.

Real-Time Digital Fuzzy Control Systems considering Computing Time-Delay

  • Park, Chang-Woo;Shin, Hyun-Seok;Park, Mig-Non
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.423-431
    • /
    • 2000
  • In this paper, the effect of computing time-delay in the real-time digital fuzzy control systems is investigated and the design methodology of a real-time digital fuzzy controller(DFC) to overcome the problems caused by it is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period. The analysis and the design problem considering computing time-delay is very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy control system is solved by the linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to find the stable feedback gains and a common positive definite matrix P for the designed fuzzy control system Furthermore, we develop a real-time fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of the computing time-delay. By using the proposed method, we design a DFC which guarantees the stability of the real time digital fuzzy control system in the presence of computing time-delay.

  • PDF

Design and Analysis of Communication Network in a Real-time Train Information System (실시간 열차 정보 시스템에서의 차량간 광통신의 설계와 해석)

  • Kwon, O.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.534-538
    • /
    • 1995
  • In this paper, a realization of a real-time train information system(TIS) is discussed. The requirements of TIS which satisfy real-time constraints are analyzed in view of data transfer. For efficient data communication in TIS, a new network system is suggested and its real-time characteristics are analyzed and compared with the standard network system. A local unit is designed based on VMEbus system.

  • PDF

An Implementation and Performance Analysis of a CORBA Compliant Reflective Memory based Real-Time Communication Service (반영 메모리 기반 코바 실시간 통신 서비스 구현 및 성능 분석)

  • 최영근;정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-32
    • /
    • 2000
  • We present CReMeS, a CORBA-compliant design and implementation of a new real-time communication service. It provide for of a new real-time communication service. It provide for efficient, predictable, and scalable communication between information producers and consumers. Experimental results demonstrate that CReMeS can achieve better performance, predictability and scalability than a Real-Time implementaion of the CORBA Event Service.

  • PDF