DOI QR코드

DOI QR Code

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Received : 2012.11.06
  • Accepted : 2012.12.29
  • Published : 2012.12.31

Abstract

It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

Keywords

References

  1. B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207-229 (2010). https://doi.org/10.1146/annurev.anchem.012809.102211
  2. D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis. 5ed. Harcour Brace & Company, Orlando (1998).
  3. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2002).
  4. E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2ed. Wiley-Interscience, (2005).
  5. M. Choi, K. Jo and H. Yang, J. Electrochem. Sci. Tech. 3, 24-28 (2012). https://doi.org/10.5229/JECST.2012.3.1.24
  6. J. H. Nam, C. H. Woo, K. M. Kim, K. S. Ryu and J. M. Ko, J. Electrochem. Sci. Tech. 3, 80-84 (2012). https://doi.org/10.5229/JECST.2012.3.2.80
  7. D. E. Smith, Anal. Chem. 35, 610-614 (1963). https://doi.org/10.1021/ac60199a035
  8. B. Y. Chang, E. Ahn and S. M. Park, J. Phys. Chem. C 112, 16902-16909 (2008). https://doi.org/10.1021/jp805960j
  9. A. Lasia, Electrochemical Impedance Spectroscopy and its applications. In Modern Aspects of Electrochemistry, White, R. E.; Conway, B. E.; Bockris, J. O. M., Eds. Plenum Press: New York, Vol. 32 (1999).
  10. M. Sluyters-Rehbach and J. H. Sluyters, J. Electroanal. Chem. 102, 415-419 (1979). https://doi.org/10.1016/S0022-0728(79)80468-4
  11. Z. B. Stoynov, Electrochim. Acta 37, 2357-2359 (1992). https://doi.org/10.1016/0013-4686(92)85132-5
  12. G. S. Popkirov and R. N. Schindler, Electrochim. Acta 38, 861-867 (1993). https://doi.org/10.1016/0013-4686(93)87002-U
  13. B.-Y. Chang and S.-M. Park, Anal. Chem. 79, 4892-4899 (2007). https://doi.org/10.1021/ac070169w
  14. B.-Y. Chang, H. J. Lee and S.-M. Park, Electroanalysis 23, 2070-2078 (2011). https://doi.org/10.1002/elan.201100173
  15. S. Rodrigues, N. Munichandraiah and A. K. Shukla, J. Power Sources 87, 12-20 (2000). https://doi.org/10.1016/S0378-7753(99)00351-1
  16. S. Andreasen, J. Jespersen, E. Schaltz and S. Kaer, Fuel Cells 9, 463-473 (2009). https://doi.org/10.1002/fuce.200800137
  17. K. C. Hess, W. K. Epting and S. Litster, Anal. Chem. 83, 9492-9498 (2011). https://doi.org/10.1021/ac202231y

Cited by

  1. Electrochemical Impedance Method to Measure the Potential of the Outer Helmholtz Plane vol.161, pp.6, 2014, https://doi.org/10.1149/2.047406jes