• Title/Summary/Keyword: Real-Time Analysis

Search Result 6,753, Processing Time 0.04 seconds

Rapid detection and quantification of porcine circovirus type 2 (PCV 2) DNA in Real-time PCR (Real-time PCR을 이용한 돼지써코바이러스 감염증 진단법 연구)

  • Kim, Eun-Gyeong;Hwang, Bo-Won;Lee, Jong-Min;Son, Byeong-Guk;Park, Ho-Jung;Kim, Tho-Kyoung
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Assay for the detection and quantification of porcine circovirus type 2 (PCV 2) with the real-time PCR were developed. TaqMan probe real-time using a set of primer/probe was developed for detection of PCV 2. In this study we applied real-time PCR assay to 320 samples, collected from pig farms. In 151 of 320 samples, PCV 2 DNA was detected by conventional PCR assay. All samples positive for PCV 2 DNA in conventional PCR assay were also positive in Real-time PCR assay, but 69 of 169 samples that tested negative for PCV 2 DNA in conventional assay were tested positive in TaqMan probe real-time PCR assay. The test of TaqMan probe real-time PCR resulted in detection and quantification limits of 101 copies per sample. TaqMan probe real-time PCR assay increased the number of samples in which PCV 2 was detected by 21%. TaqMan probe real-time PCR assay is very efficient method in contrast to the conventinal PCR, becoming increasingly important method for gene analysis.

Methodology for real-time adaptation of tunnels support using the observational method

  • Miranda, Tiago;Dias, Daniel;Pinheiro, Marisa;Eclaircy-Caudron, Stephanie
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-171
    • /
    • 2015
  • The observational method in tunnel engineering allows the evaluation in real time of the actual conditions of the ground and to take measures if its behavior deviates considerably from predictions. However, it lacks a consistent and structured methodology to use the monitoring data to adapt the support system in real time. The definition of limit criteria above which adaptation is required are not defined and complex inverse analysis procedures (Rechea et al. 2008, Levasseur et al. 2010, Zentar et al. 2001, Lecampion et al. 2002, Finno and Calvello 2005, Goh 1999, Cui and Pan 2012, Deng et al. 2010, Mathew and Lehane 2013, Sharifzadeh et al. 2012, 2013) may be needed to consistently analyze the problem. In this paper a methodology for the real time adaptation of the support systems during tunneling is presented. In a first step limit criteria for displacements and stresses are proposed. The methodology uses graphics that are constructed during the project stage based on parametric calculations to assist in the process and when these graphics are not available, since it is not possible to predict every possible scenario, inverse analysis calculations are carried out. The methodology is applied to the "Bois de Peu" tunnel which is composed by two tubes with over 500 m long. High uncertainty levels existed concerning the heterogeneity of the soil and consequently in the geomechanical design parameters. The methodology was applied in four sections and the results focus on two of them. It is shown that the methodology has potential to be applied in real cases contributing for a consistent approach of a real time adaptation of the support system and highlight the importance of the existence of good quality and specific monitoring data to improve the inverse analysis procedure.

A co-simulation study on a control system with the matlab toolbox for OSEK-OS (OSEK-OS를 위한 Matlab 도구상자와 제어시스템의 연계 모의실험에 관한 연구)

  • Kim, Seung-Hoon;SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.149-151
    • /
    • 2001
  • In real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a real-time system such as a schedulability test must be performed during the system design phase. This paper presents a Matlab toolbox for simulation of real-time control system based on OSEK-OS, which is one of the most widely adopted real-time operating systems in automotive industry. The toolbox allows the user to explore the timely behavior of control algorithms, and to study the interaction between the object of the OSEK-OS, such as task, scheduler and resource etc.

  • PDF

Extension of Real Time Execution in MMS Implementation

  • Kim, Dong-Sung;Lee, Jae-Min;Kim, Hyung-Suk;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.69-72
    • /
    • 1999
  • In this paper, the implementation method for the extending real-time execution in MMS Implementation is proposed. For this, the method of MMS over ATM(Asynchronous Transfer Mode) and IEEE 802.12 network is analyzed. By the analysis of service response time, making the ASIC of encoding and decoding parts are proposed for one of the real time extension in MMS. The main goals of this paper to analyze and propose suitable methods to meet the real time requirements in MMS applied system.

  • PDF

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Implementation of Real-time Dangerous Driving Behavior Analysis Utilizing the Digital Tachograph (디지털 운행기록장치를 활용한 실시간 위험운전행동분석 구현)

  • Kim, Yoo-Won;Kang, Joon-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • In this paper, we proposed the method that enabling warning through real-time analysis of dangerous driving behavior, improving driving habits and safe driving using the digital tachograph. Most of traffic accidents and green drive are closely related of driving habits. These wrong driving habits need to be improved by the real-time analysis, warning and automated method of driving habits. We confirmed the proposed that the method will help support eco-driving, safe driving through real-time analysis of driving behavior and warning through the method implementation and experiment.

A Study on Real Time and Non-real Time Traffic Multiplexing with Congestion Control (폭주제어를 포함한 실시간 및 비실시간 트래픽의 다중화에 관한 연구)

  • 송관호;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.750-760
    • /
    • 1994
  • In this paper we proposed a multiplexing scheme of real time and non-real traffics in which a congestion control is embedded. Real time traffics are assumed to be nonqueuable and have preemptive priority over non-real time traffics in seizing the common output link, whereas the non-real time traffics wait in the common buffer if the output link is not available for transmission. Real time traffics are encoded according to the bandwidth reduction strategy, paticularly when congestion occurs among non-real time traffics. This scheme provides us an efficient way for utilizing the costly bandwidth resources, by accommodation as many real time traffics as possible with gauranteeing its mimimum bandwidth requirements, and also resloving the congestion encountered among non-real time traffics. We describe the system as a Markov queueing system, provide the analysis by exploiting the matrix geometric method, and present the performance for various performance measures of interest. Some numerical results are also provided.

  • PDF

Spatio-temporal Analysis using Real-Time Data Processing for Wireless Sensor Networks (무선 센서 네트워크에서 실시간 데이터 처리를 이용한 시공간 분석)

  • Baek, Jeong-Ho;Mun, Young-Chae;Lee, Hong-Ro
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.688-692
    • /
    • 2010
  • Wireless sensor network system collects and analyzes real-time data that have been requested by the many application nodes. This paper has constructed a sensor network cluster with various elements in the Gunsan City area of Jeollabuk-do, S.korea. The purpose of this paper is to utilize the constructed system in order to illustrate the real-time data in a diagram and analyze it to deduce the change ratio. The resulting analysis contents allow simple data interpretation by illustrating the data in change ratio by time, space, and motional directions. This analytical method will offer great benefit to those users using the wireless sensor network.

Comparing Separate and Statically-Partitioned Caches for Time-Predictable Multicore Processors

  • Wu, Lan;Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • In this paper, we quantitatively compare two different time-predictable multicore cache architectures, separate and statically-partitioned caches, through extensive simulation. Current research trends primarily focus on partitioned-cache architectures in order to achieve time predictability for hard real-time multicore based systems, and our experiments reveal that separate caches actually lead to much better performance and energy efficiency when compared to statically-partitioned caches, and both of them are adequate for timing analysis for real-time multicore applications.