• Title/Summary/Keyword: Real time motion control

Search Result 508, Processing Time 0.029 seconds

Technology Trends for Motion Synthesis and Control of 3D Character

  • Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.19-26
    • /
    • 2019
  • In this study, we study the development and control of motion of 3D character animation and discuss the development direction of technology. Character animation has been developed as a data-based method and a physics-based method. The animation generation technique based on the keyframe method has been made possible by the development of the hardware technology, and the motion capture device has been used. Various techniques for effectively editing the motion data have appeared. At the same time, animation techniques based on physics have emerged, which realistically generate the motion of the character by physically optimized numerical computation. Recently, animation techniques using machine learning have shown new possibilities for creating characters that can be controlled by the user in real time and are expected to be developed in the future.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

NAVIGATION ALGORITHM FOR AUTONOMOUS MOBILE ROBOT USING Fuzzy CONTROLLER (퍼지제어기를 이용한 이동로봇의 주행알고리즘 개발)

  • Park, Ki-Doo;Jeong, Heon;Kim, Young-Dong;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.403-405
    • /
    • 1997
  • In this paper, a navigation system based on fuzzy logic controllers is developed for a mobile robot in an unknown environment. The structure of this fuzzy navigation system features sensor system, fuzzy controllers for motion planning and the motion control system for real-time execution.

  • PDF

Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot (스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현)

  • Kim Hong-Rae;Han Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Development of Simple-function PC-NC System Based on One-CPU (단인 CPU 기반의 단순 기능형 PC-NC 시스템 개발)

  • 전현배;황진동;이돈진;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.229-232
    • /
    • 2000
  • This research aims at developing a low-cost PC-NC system based on one-CPU and investigating the feasibility of its application to a simple-function lathe. Its hardware consists a two axes motion control board including a 24bit counter, 8253 timer, a 12bit DA converter, DIO board for PLC operation and a PC with Intel Pentium 466MHz. The fundamental real-time MC functions such as G-code interpretation, interpolation, position and velocity control of axes are performed. User programming interface with functions of icon manipulation, tool-path simulation and NC-code generation was implemented. In order to achieve real-time control and safety, axis control, NC interpretation, interpolation and user communication are completely executed during every interrupt interval of I msec.

  • PDF

Time Domain Passivity Approach for Soft and Deformable Environments (변형 가능한 작업환경에 대한 시간영역 수동제어 방법)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.457-463
    • /
    • 2006
  • Recently proposed control scheme for a stable teleoperation, which was based on two-port time-domain passivity approach[21], has been successful for a contact with high stiffness environments. However, we found several conservatisms during the contact with deformable environments and unconstrained motion. The two-port time-domain passivity controller was excessively dissipating energy even though it was not necessary for some cases of an unconstrained motion and soft contact. The main reason of those conservatisms was on the fact that the two-port time-domain passivity controller was activated without considering the amount of energy dissipation at the master and slave manipulators. Especially, the exclusion of the slave manipulator from the two-port was the dominant reason of the conservatisms. In this paper, we consider the amount of energy dissipation at slave manipulator for designing the time-domain passivity observer and controller. The measured interaction force between slave manipulator and environment allow the time-domain passivity observer to include the amount of energy dissipation at the slave manipulator. Based on the modified passivity observer, reference energy following method[24] is applied to satisfy the passivity condition in real-time. The feasibility of the developed methods is proved with experiments. Improved performance is obtained for an interaction with deformable environments and an unconstrained motion.

A PMSM Motion Control System with Direct Torque Control (직접토크제어에 의한 PMSM의 위치제어 시스템)

  • 김남훈
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어)

  • 한성현;김종수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

Estimation of Rider's Action Force from Measurement of Motion Platform Control Force in the 6 DOF Bicycle Simulator (6 자유도 자전거 시뮬레이터의 운동 장치 제어력을 이용한 운전자의 작용력 추정)

  • 신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.842-847
    • /
    • 2002
  • One of the challenging problems with bicycle simulators is to deal with the inherent unstable bicycle dynamics that is coupled with rider's motion. For the bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The six control forces of the Stewart platform-based motion system are used for estimation of the rider's action force, which is one of the important control inputs, but of which the direct measurement is impractical. For the effective estimation of the rider's action force, the dynamics model of the motion system is derived incorporated with both analytical and experimental methods and the sliding mode controller with perturbation estimation is developed.

  • PDF