• Title/Summary/Keyword: Real effluent

Search Result 65, Processing Time 0.033 seconds

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste (순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가)

  • Park, Seyong;Kim, Moonil;Park, Seonghyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.5-16
    • /
    • 2021
  • In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

A Study on the Water Quality Management Using the Rotifers (윤충류를 활용한 하천 및 연안의 수질관리에 관한 연구)

  • Kim, Jeong-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.227-232
    • /
    • 2007
  • Water pollution in enclosed water bodies such as lake and river has become a serious problem over the world. Domestic wastewater is responsible for more than 60 % pollution load in public water area in Korea. Effluent of the treated domestic wastewater at low removal level is abundantly fed rivers and lakes and thus be an serious cause of lake pollution. Therefore, effective implement of domestic wastewater treatment in basin of lake and river must be prepared. The septic tank is one of the effective domestic wastewater treatment equipment and used in individual treatment for a unit of household, The purpose of septic tank as biological treatment system is simultaneously to remove BOD, T-N, T-P and reduce turbidity from influent. Accordingly, the appropriate control of functional microorganisms is important subject for the establishment of stability and economy of the biological treatment method. Especially, microanimals as a high-ranked microorganisms of food-chain are important, because microanimals control the other microorganisms especially various bacteria and effect on function of treatment. Therefore, it is necessary that functional predator like rotifers are attached in wastewater treatment process. In this study, the methods for attachment high density the rotifer to and improvement of transparency in the effluence by a dense rotifer was examined using laboratory scale biological treatment reactor simulated septic tank and real one.

An Innovative Expert System for the Maintenance of On-site Wastewater Treatment Process for Small-scale Residential and Commercial Sites (마을단위 소규모 하·폐수처리 공정의 효율적 유지관리를 위한 전문가 시스템에 관한 연구)

  • Kim, Seung-jun;Choi, Yong-su;Hong, Seok-won;Kwon, Gi-han;Chung, Ik-jae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the process control logic, PLC system, and HMI for the process automation. In order to monitor and remote control its status, the real-time data was transferred from the on-site control center to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from pilot tests, the quality of treated wastewater with sand filtration was enough to be utilized again.

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Optimization of chemical precipitation for phosphate removal from domestic wastewater (생활하수내 인 제거를 위한 화학적 침전의 최적화)

  • Lee, Sunkyung;Park, Munsik;Yeon, Seungjae;Park, Donghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.663-671
    • /
    • 2016
  • Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.

Application of Electrocoagulation for Printing Wastewater Treatment: From Laboratory to Pilot Scale

  • Thuy, Nguyen Thi;Hoan, Nguyen Xuan;Thanh, Dang Van;Khoa, Pham Minh;Tai, Nguyen Thanh;Hoang, Quang Huy;Huy, Nguyen Nhat
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • This study reports for the first time the application of electrocoagulation (EC) from laboratory to pilot scales for the treatment of printing wastewater, a hazardous waste whose treatment and disposal are strictly regulated. The wastewater was taken from three real printing companies with strongly varying characteristics. The treatment process was performed in the laboratory for operational optimization and then applied in the pilot scale. The weight loss of the electrode and the generation of sludge at both scales were compared. The results show that the raw wastewater should be diluted before EC treatment if its COD is higher than about 10,000 mg/L. Pilot scale removal efficiencies of COD and color were slightly lower compared to those obtained from the laboratory scale. At pilot scale, the effluent CODs removal efficiency was 81.9 - 88.9% (final concentration of 448 - 992 mg/L) and color removal efficiency was 95.8 - 98.6% (final level of 89 - 202 Pt-Co) which proved the feasibility of EC treatment as an effective pre-treatment method for printing wastewater as well as other high colored and hard-biodegradable wastewaters.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).