• Title/Summary/Keyword: Real canonical form

Search Result 13, Processing Time 0.029 seconds

Adaptive Observer Design for Nonlinear Systems Using Generalized Nonlinear Observer Canonical Form

  • Jo, Nam-Hoon;Son, Young-Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1150-1158
    • /
    • 2004
  • In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.

Adaptive Observer Design for Multi-Output Unobservable Nonlinear Systems (다중출력 관측불가능 비선형 시스템의 적응관측기 설계기법)

  • Jo Nam-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, we present an adaptive observer for multi-output nonlinear systems that include unknown constant parameters and are not necessarily observable. Based on generalized nonlinear observer canonical form, new adaptive observer canonical form is proposed. Sufficient conditions are given for a nonlinear system to be transformed into the proposed adaptive observer canonical form. The existence of the proposed adaptive observer is given in terms of Lyapunov-like condition and SPR condition. An illustrative example is presented to show the design procedure of the proposed method.

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

A Study on the Impact of Artificial Intelligence Industry on Macroeconomy: Evidence from United States of America

  • He, Yugang
    • Asian Journal of Business Environment
    • /
    • v.8 no.4
    • /
    • pp.37-44
    • /
    • 2018
  • Purpose - The artificial intelligence industry plays an increasingly significant role in stimulating the development of United States of America's economy. On account of this background, this paper attempts to explore the impact of artificial intelligence industry on United States of America's macroeconomy. Research design, data, and methodology - This paper mainly focuses on the impact of artificial intelligence industry on GDP, employment, real income, import, export and foreign direct investment. Furthermore, the Phillips-Perron test and Canonical cointegrating regression will be employed to examine the impact of artificial intelligence industry on United States of America's macroeconomy with a sample form 2010-Q1 to 2017-Q4. Results - Via the empirical analysis, the results reveal that the artificial intelligence industry has a positive effect on United States of America's GDP, employment, real income, export and foreign direct investment. Conversely, the artificial intelligence industry has a negative effect on United States of America's import. Conclusions - In summary, the impact of artificial intelligence industry on United States of America's macroeconomy is positive and significant in statistics. Therefore, the government of United States of America should put more input into artificial intelligence industry.

THE E-EULER PROCESS FOR NONAUTONOMOUS SYSTEMS

  • Yu, Dong-Won
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • The E-Euler process has been proposed for autonomous dynamical systems in [7]. In this paper, the E-Euler process is extended to nonautonomous dynamical systems. When a discrete function is bounded or gradually decreases to ${\epsilon}\;<<\;1$ as $n\;{\rightarrow}\;{\infty}$, it is shown that the relative error converges to a constant or decreases.

  • PDF

GENERALIZED EULER PROCESS FOR SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Yu, Dong-Won
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.941-958
    • /
    • 2000
  • Euler method is generalized to solve the system of nonlinear differential equations. The generalization is carried out by taking a special constant matrix S so that exp(tS) can be exactly computed. Such a matrix S is extracted from the Jacobian matrix of the given problem. Stability of the generalized Euler process is discussed. It is shown that the generalized Euler process is comparable to the fourth order Runge-Kutta method. We also exemplify that the important qualitative and geometric features of the underlying dynamical system can be recovered by the generalized Euler process.

A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS IN INDEFINITE KAEHLER MANIFOLDS

  • Kumar, Sangeet;Pruthi, Megha
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.783-800
    • /
    • 2021
  • We prove the non-existence of warped product GCR-lightlike submanifolds of the type K × λ KT such that KT is a holomorphic submanifold and K is a totally real submanifold in an indefinite Kaehler manifold $\tilde{K}$. Further, the existence of GCR-lightlike warped product submanifolds of the type KT × λ K is obtained by establishing a characterization theorem in terms of the shape operator and the warping function in an indefinite Kaehler manifold. Consequently, we find some necessary and sufficient conditions for an isometrically immersed GCR-lightlike submanifold in an indefinite Kaehler manifold to be a GCR-lightlike warped product, in terms of the canonical structures f and ω. Moreover, we also derive a geometric estimate for the second fundamental form of GCR-lightlike warped product submanifolds, in terms of the Hessian of the warping function λ.

Feedback Linearization of an Electro-Hydraulic Velocity Control System and the Implementation of the Digital State Feedback Controller (전기유압 속도제어 시스템의 궤환 선형화 및 이에 대한 디지틀 상태 궤환 제어의 구현)

  • 김영준;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1036-1055
    • /
    • 1992
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the implementation of the digital state feedback controller is studied. The $C^{\infty}$ nonlinear transfomation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed implementation method is easier than the other proposed methods and it is possible to control in real time. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful..

Temperature Effects on the Industrial Electricity Usage (산업별 전력수요의 기온효과 분석)

  • Kim, In-Moo;Lee, Yong-Ju;Lee, Sungro;Kim, Daeyong
    • Environmental and Resource Economics Review
    • /
    • v.25 no.2
    • /
    • pp.141-178
    • /
    • 2016
  • This paper, using AMR (Automatic Meter Reading) electricity data accurately measured in real time, analyses the characteristics and patterns of temperature effect on the industrial electricity usage. For this goal, the paper constructs and estimates a model which captures the properties of AMR time series including long-term trends, mid-term temperature effects, and short-term special day effects. Based on the estimated temperature response function and the temperature effect, we categorize the whole industry into two groups: one group with sharp temperature effect and the other with weak temperature effect. Furthermore, the industry group with sharp temperature effect is classified into a summer peak industry group and a winter peak industry group, based on the estimates of the temperature response function. These empirical results carry practical policy implications on the real time electricity demand management.

Rapid Implementation of 3D Facial Reconstruction from a Single Image on an Android Mobile Device

  • Truong, Phuc Huu;Park, Chang-Woo;Lee, Minsik;Choi, Sang-Il;Ji, Sang-Hoon;Jeong, Gu-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1690-1710
    • /
    • 2014
  • In this paper, we propose the rapid implementation of a 3-dimensional (3D) facial reconstruction from a single frontal face image and introduce a design for its application on a mobile device. The proposed system can effectively reconstruct human faces in 3D using an approach robust to lighting conditions, and a fast method based on a Canonical Correlation Analysis (CCA) algorithm to estimate the depth. The reconstruction system is built by first creating 3D facial mapping from a personal identity vector of a face image. This mapping is then applied to real-world images captured with a built-in camera on a mobile device to form the corresponding 3D depth information. Finally, the facial texture from the face image is extracted and added to the reconstruction results. Experiments with an Android phone show that the implementation of this system as an Android application performs well. The advantage of the proposed method is an easy 3D reconstruction of almost all facial images captured in the real world with a fast computation. This has been clearly demonstrated in the Android application, which requires only a short time to reconstruct the 3D depth map.