• Title/Summary/Keyword: Real Time Image Processing

Search Result 1,346, Processing Time 0.034 seconds

Gaze Detection System by IR-LED based Camera (적외선 조명 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.494-504
    • /
    • 2004
  • The researches about gaze detection have been much developed with many applications. Most previous researches only rely on image processing algorithm, so they take much processing time and have many constraints. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.2 cm of RMS error.

Efficient H.264/AVC Video Scrambling Methods for Digital Rights Management (디지털 저작권 관리를 위한 효율적인 H.264/AVC 비디오 스크램블링 방법)

  • Kim, Soojin;Park, Geun;Cho, Kyeongsoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • This paper describes efficient H.264/AVC video scrambling methods for digital rights management. The proposed scrambling methods are to scramble level and suffix in entropy encoding and MVD in motion estimation of the H.264 video compression process. Other scrambling methods have been proposed but they degrade the compression efficiency or make it difficult to achieve real-time processing due to the large amount of computational efforts. Since the proposed scrambling methods resolve the drawbacks of other approaches, they do not cause image distortion and the original compression efficiency is maintained. We verified our scrambling methods and evaluated the performance by conducting several experiments with H.264 reference program. Finally, we implemented video player system using USB dongle in order to apply the proposed scrambling/descrambling methods to H.264 video compression.

3D First Person Shooting Game by Using Eye Gaze Tracking (눈동자 시선 추적에 의한 3차원 1인칭 슈팅 게임)

  • Lee, Eui-Chul;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.465-472
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMB. The proposed method is composed of 3 parts. At first, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, when the user gaze on the monitor plane, the geometric relationship between the gazing position of monitor and the detected position of pupil center is determined. In the last part, the final gaze position on the HMD monitor is tracked and the 3D view in game is controlled by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his(or her) hand. Also, it can Increase the interest and the immersion by synchronizing the gaze direction of game player and the view direction of game character.

Shadow Classification for Detecting Vehicles in a Single Frame (단일 프레임에서 차량 검출을 위한 그림자 분류 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.991-1000
    • /
    • 2007
  • A new robust approach to detect vehicles in a single frame of traffic scenes is presented. The method is based on the multi-level shadow classification, which has been shown to have the capability of extracting correct shadow shapes regardless of the operating conditions. The rationale of this classification is supported by the fact that shadow regions underneath vehicles usually exhibit darker gray level regardless of the vehicle brightness and illuminating conditions. Classified shadows provide string clues on the presence of vehicles. Unlike other schemes, neither background nor temporal information is utilized; thereby the performance is robust to the abrupt change of weather and the traffic congestion. By a simple evidential reasoning, the shadow evidences are combined with bright evidences to locate correct position of vehicles. Experimental results show the missing rate ranges form 0.9% to 7.2%, while the false alarm rate is below 4% for six traffic scenes sets under different operating conditions. The processing speed for more than 70 frames per second could be obtained for nominal image size, which makes the real-time implementation of measuring the traffic parameters possible.

Application of Deep Learning-based Object Detection and Distance Estimation Algorithms for Driving to Urban Area (도심로 주행을 위한 딥러닝 기반 객체 검출 및 거리 추정 알고리즘 적용)

  • Seo, Juyeong;Park, Manbok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.83-95
    • /
    • 2022
  • This paper proposes a system that performs object detection and distance estimation for application to autonomous vehicles. Object detection is performed by a network that adjusts the split grid to the input image ratio using the characteristics of the recently actively used deep learning model YOLOv4, and is trained to a custom dataset. The distance to the detected object is estimated using a bounding box and homography. As a result of the experiment, the proposed method improved in overall detection performance and processing speed close to real-time. Compared to the existing YOLOv4, the total mAP of the proposed method increased by 4.03%. The accuracy of object recognition such as pedestrians, vehicles, construction sites, and PE drums, which frequently occur when driving to the city center, has been improved. The processing speed is approximately 55 FPS. The average of the distance estimation error was 5.25m in the X coordinate and 0.97m in the Y coordinate.

Mobile Presentation using Transcoding Method of Region of Interest (관심 영역의 트랜스코딩 기법을 이용한 모바일 프리젠테이션)

  • Seo, Jung-Hee;Park, Hung-Bog
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.197-204
    • /
    • 2010
  • An effective integration of web-based learning environment and mobile device technology is considered as a new challenge to the developers. The screen size, however, of the mobile device is too small, and its performance is too inferior. Due to the foregoing limit of mobile technology, displaying bulk data on the mobile screen, such as a cyber lecture accompanied with real-time image transmission on the web, raises a lot of problems. Users have difficulty in recognizing learning contents exactly by means of a mobile device, and continuous transmission of video stream with bulky information to the mobile device arouses a lot of load for the mobile system. Thus, an application which is developed to be applied in PC is improper to be used for the mobile device as it is, a player which is fitting for the mobile device should be developed. Accordingly, this paper suggests mobile presentation using transcoding techniques of the field concerned. To display continuous video frames of learning image, such as a cyber lecture or remote lecture, by means of a mobile device, the performance difference between high-resolution digital image and mobile device should be surmounted. As the transcoding techniques to settle the performance difference causes damage of image quality, high-quality image may be guaranteed by application of trial and error between transcoding and selected learning resources.

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.

Moving Object Contour Detection Using Spatio-Temporal Edge with a Fixed Camera (고정 카메라에서의 시공간적 경계 정보를 이용한 이동 객체 윤곽선 검출 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.474-486
    • /
    • 2010
  • In this paper, we propose a new method for detection moving object contour using spatial and temporal edge. In general, contour pixels of the moving object are likely present around pixels with high gradient value along the time axis and the spatial axis. Therefore, we can detect the contour of the moving objects by finding pixels which have high gradient value in the time axis and spatial axis. In this paper, we introduce a new computation method, termed as temporal edge, to compute an gradient value along the time axis for any pixel on an image. The temporal edge can be computed using two input gray images at time t and t-2 using the Sobel operator. Temporal edge is utilized to detect a candidate region of the moving object contour and then the detected candidate region is used to extract spatial edge information. The final contour of the moving object is detected using the combination of these two edge information, which are temporal edge and spatial edge, and then the post processing such as a morphological operation and a background edge removing procedure are applied to remove noise regions. The complexity of the proposed method is very low because it dose not use any background scene and high complex operation, therefore it can be applied to real-time applications. Experimental results show that the proposed method outperforms the conventional contour extraction methods in term of processing effort and a ghost effect which is occurred in the case of entropy method.

A Fast Algorithm of the Belief Propagation Stereo Method (신뢰전파 스테레오 기법의 고속 알고리즘)

  • Choi, Young-Seok;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The belief propagation method that has been studied recently yields good performance in disparity extraction. The method in which a target function is modeled as an energy function based on Markov random field(MRF), solves the stereo matching problem by finding the disparity to minimize the energy function. MRF models provide robust and unified framework for vision problem such as stereo and image restoration. the belief propagation method produces quite correct results, but it has difficulty in real time implementation because of higher computational complexity than other stereo methods. To relieve this problem, in this paper, we propose a fast algorithm of the belief propagation method. Energy function consists of a data term and a smoothness tern. The data term usually corresponds to the difference in brightness between correspondences, and smoothness term indicates the continuity of adjacent pixels. Smoothness information is created from messages, which are assigned using four different message arrays for the pixel positions adjacent in four directions. The processing time for four message arrays dominates 80 percent of the whole program execution time. In the proposed method, we propose an algorithm that dramatically reduces the processing time require in message calculation, since the message.; are not produced in four arrays but in a single array. Tn the last step of disparity extraction process, the messages are called in the single integrated array and this algorithm requires 1/4 computational complexity of the conventional method. Our method is evaluated by comparing the disparity error rates of our method and the conventional method. Experimental results show that the proposed method remarkably reduces the execution time while it rarely increases disparity error.

Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation (항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘)

  • Ryu, Eun-Ji;Lee, Hyo-Chan;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In line with future changes in the marine environment, Aids to Navigation has been used in various fields and their use is increasing. The term "Aids to Navigation" means an aid to navigation prescribed by Ordinance of the Ministry of Oceans and Fisheries which shows navigating ships the position and direction of the ships, position of obstacles, etc. through lights, shapes, colors, sound, radio waves, etc. Also now the use of Aids to Navigation is transforming into a means of identifying and recording the marine weather environment by mounting various sensors and cameras. However, Aids to Navigation are mainly lost due to collisions with ships, and in particular, safety accidents occur because of poor observation visibility due to sea fog. The inflow of sea fog poses risks to ports and sea transportation, and it is not easy to predict sea fog because of the large difference in the possibility of occurrence depending on time and region. In addition, it is difficult to manage individually due to the features of Aids to Navigation distributed throughout the sea. To solve this problem, this paper aims to identify the marine weather environment by estimating sea fog level approximately with images taken by cameras mounted on Aids to Navigation and to resolve safety accidents caused by weather. Instead of optical and temperature sensors that are difficult to install and expensive to measure sea fog level, sea fog level is measured through the use of general images of cameras mounted on Aids to Navigation. Furthermore, as a prior study for real-time sea fog level estimation in various seas, the sea fog level criteria are presented using the Haze Model and Dark Channel Prior. A specific threshold value is set in the image through Dark Channel Prior(DCP), and based on this, the number of pixels without sea fog is found in the entire image to estimate the sea fog level. Experimental results demonstrate the possibility of estimating the sea fog level using synthetic haze image dataset and real haze image dataset.