• Title/Summary/Keyword: Reactor stability

Search Result 342, Processing Time 0.035 seconds

Removal/Recovery of Heavy Metals Using Biopolymer (생물고분자를 이용한 중금속 제거/회수에 관한 연구)

  • 안대희;정윤철
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.336-340
    • /
    • 1993
  • Zoogloea ramigera 115, well known type of bacteria to produce slime in sewage plants, was selected for biopolymer production. The extracted biopolymer showed high uptake capacity of metals such as cadmium and zinc. Especially the fermentor broth itself showed high adsorption of metal and could be used a biosorbent without an additional separation process. Biopolymer was immobilized into beads of calcium alginate and used in a packed bed reactor for the purpose of valued metals recovery. The biopolymer showed high removal efficiencies of 80% or greater for Cu, Cd, Mn and Zn, and high stability in sorption-desorption-resorption experiments. The immobilized biopolymer systems were found to be comparable to other metal removal systems such as ion exchange resins and to be of potential industrial application value.

  • PDF

Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study

  • Kim, Chang-Joon;Lee, Sang-Jong;Chang, Yong-Keun;Chun, Gie-Taek;Jeong, Yeon-Ho;Kim, Sung-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.544-549
    • /
    • 2006
  • The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.

THE PARTIAL COMBUSTION OF METHANE TO SYNGAS OVER PRECIOUS METALS AND NICKEL CATALYSTS SUPPORTED ON -γAL2O3 AND CEO2

  • Seo, Ho-Joon
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2005
  • The catalytic activity of precious metals(Rh, Pd, Pt) and nickel catalysts supported on ${\gamma}-Al_2O_3\;and\;CeO_2$ in the partial combustion of methane(PCM) to syngas was investigated based on the product distribution in a fixed bed now reactor under atmospheric condition and also on analysis results by SEM, XPS, TPD, BET, and XRD. The activity of the catalysts based on the syngas yield increased in the sequence $Rh(5)/CeO_2{\geq}Ni(5)/CeO_2>>Rh(5)/Al_2O_3>Pd(5)/Al_2O_3>Ni(5)/Al_2O_3$. Compared to the precious catalysts, the syngas yield and stability of the $Ni(5)/CeO_2$ catalyst were almost similar to $(5)/CeO_2$ catalyst, and superior to these of any other catalysts. The syngas yield of $Ni(5)/CeO_2$ catalyst was 90.66% at 1023 K. It could be suggested to be the redox cycle of the successive reaction and formation of active site, $Ni^{2-}$ and the lattice oxygen, $O^{2-}$ produced due to reduction of $Ce^{4-}$ to $Ce^{3-}$.

Simulation of the Digital Image Processing Algorithm for the Coating Thickness Automatic Measurement of the TRISO-coated Fuel Particle

  • Kim, Woong-Ki;Lee, Young-Woo;Ra, Sung-Woong
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.36-40
    • /
    • 2005
  • TRISO (Tri-Isotropic)-coated fuel particle is widely applied due to its higher stability at high temperature and its efficient retention capability for fission products in the HTGR (high temperature gas-cooled reactor), one of the highly efficient Generation IV reactors. The typical ball-type TRISO-coated fuel particle with a diameter of about 1 mm is composed of a nuclear fuel particle as a kernel and of outer coating layers. The coating layers consist of a buffer PyC, inner PyC, SiC, and outer PyC layer. In this study, a digital image processing algorithm is proposed to automatically measure the thickness of the coating layers. An FBP (filtered backprojection) algorithm was applied to reconstruct the CT image using virtual X-ray radiographic images for a simulated TRISO-coated fuel particle. The automatic measurement algorithm was developed to measure the coating thickness for the reconstructed image with noises. The boundary lines were automatically detected, then the coating thickness was circularly by the algorithm. The simulation result showed that the measurement error rate was less than 1.4%.

Experimental Analysis of Small Thruster Chamber Design (소형 추력기 반응기 설계에 대한 실험적 고찰)

  • Lee, Jeong-Sub;Kim, Su-Kyum;Yu, Myoung-Jong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.117-120
    • /
    • 2011
  • The parameters which can affect the performance of small thruster were verified by experiments. The loss of catalyst through the port for pressure sensor was prevented by chamber wall mesh. There was no performance decrease due to chamber wall mesh, and stable supply of propellant is the key of stability of the thruster. However, sudden pressure drop in the chamber can decrease the performance instantly. Therefore, the sudden pressure drop should be eliminated as much as possible. The cross type distributor showed more stable performance than circular type, and structural strength is also stronger.

  • PDF

A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario

  • de Sousa, J. Ricardo Tavares;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 2019
  • After Fukushima Dai-ichi NPP accident, the need for implementation of diverse and flexible coping strategies (FLEX) became evident. However, to ensure the effectiveness of the safety strategy, it is essential to quantify the uncertainties associated with the station blackout (SBO) scenario as well as the operator actions. In this paper, a systems engineering approach for uncertainty analysis (UA) of a SBO scenario in advanced pressurized water reactor is performed. MARS-KS is used as a best estimate thermal-hydraulic code and is loosely-coupled with Dakota software which is employed to develop the uncertainty quantification framework. Furthermore, the systems engineering approach is adopted to identify the requirements, functions and physical architecture, and to develop the verification and validation plan. For the preliminary analysis, 13 uncertainty parameters are propagated through the model to evaluate the stability and convergence of the framework. The developed framework will ultimately be used to quantify the aleatory and epistemic uncertainties associated with an extended SBO accident scenario and assess the coping capability of APR1400 and the effectiveness of the implemented FLEX strategies.

Beam-target configurations and robustness performance of the tungsten granular flow spallation target for an Accelerator-Driven Sub-critical system

  • Cai, Han-Jie;Jia, Huan;Qi, Xin;Lin, Ping;Zhang, Sheng;Tian, Yuan;Qin, Yuanshuai;Zhang, Xunchao;Yang, Lei;He, Yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2650-2659
    • /
    • 2022
  • The dense granular flow spallation target is a new target concept proposed for an Accelerator-Driven Sub-critical (ADS) system. In this paper, the beam-target configurations of a tungsten granular flow target for the ADS with a thermal power of 1 GW is explored. The beam profile options using different scanning methods are discussed. The critical geometry parameters are adjusted to investigate the performance of the granular target from the aspects of neutron efficiency, stability and temperature distribution in target medium. To figure out how the target under accident conditions would behave, different clogging conditions are induced in the simulation. The dynamic processes are analyzed and some important parameters such as abnormal temperature rise and beam cutoff time window are obtained. The response of the sub-critical reactor to a clogging accident is also investigated. It is indicated that the monitoring of the granular flow by the neutron detectors in the sub-critical core will be effective.

Evaluation of cementation of intermediate level liquid waste produced from fission 99Mo production process and disposal feasibility of cement waste form

  • Shon, Jong-Sik;Lee, Hyun-Kyu;Kim, Tack-Jin;Kim, Gi-Yong;Jeon, Hongrae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3235-3241
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) is planning the construction of the KIJANG Research Reactor (KJRR) for stable supply of 99Mo. The Fission 99Mo Production Process (FMPP) of KJRR produces solid waste such as spent uranium cake and alumina cake, and liquid waste in the form of intermediate level liquid waste (ILLW) and low level liquid waste (LLLW). This study thus established the operating range and optimum operating conditions for the cementation of ILLW from FMPP. It also evaluated whether cement waste form samples produced under optimum operational conditions satisfy the waste acceptance criteria (WAC) of a disposal facility in Korea (Korea radioactive waste agency, KORAD). Considering economic feasibility and safety, optimum operational conditions were achieved at a w/c ratio of 0.55, and the corresponding salt content was 5.71 wt%. The cement waste form samples prepared under optimum operational conditions were found to satisfy KORAD's WAC when tested for structural stability and leachability. The results indicate that the proposed cementation conditions for the disposal of ILLW from FMMP can be effectively applied to KJRR's disposal facility.

Radiochemical behavior of nitrogen species in high temperature water

  • Young-Jin Kim;Geun Dong Song;Seung Heon Baek;Beom Kyu Kim;Jin Sik Cheon;Jun Hwan Kim;Hee-Sang Shim;Soon-Hyeok Jeon;Hyunmyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3183-3193
    • /
    • 2023
  • The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF