• Title/Summary/Keyword: Reactor performance

Search Result 1,288, Processing Time 0.027 seconds

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong;Yoo, Kwae Hwan;Choi, Geon Pil;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.702-710
    • /
    • 2016
  • Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

A Short Review on the Mechanical and Thermal Processes for Underwater Cutting of Metal Structures (금속 구조물의 수중 절단을 위한 기계적 열적 공정의 특징 분석)

  • Mun, Do Yeong;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Underwater cutting has a different mechanism than dry cutting, and there are more restrictions than benefits. Due to these constraints, research and development of underwater cutting has been very limited. At present, reactor dismantling is emerging as an important task worldwide, and reactor pressure containers, a key part of the reactor, are decommissioned based on underwater cutting. Reactor pressure containers are high-level radioactive waste, which is one of the main goals of today, such as to bridge the gap between environmental, safety, and cutting performance; hence, a process suitable for cutting should be applied. Therefore, many studies are being conducted on underwater cutting in connection with the dismantling of nuclear reactors in various areas in order to find appropriate processes. This paper first introduces the core technology of underwater cutting processes and discusses various processes. The emphasis is then placed on the adequacy of the reactor dismantling application. More specifically, we examine the suitability for the mechanical and thermal cutting processes, respectively, to find a solution suitable for dismantling a reactor. We discuss how each solution can sufficiently perform the specified functions at each stage of reactor dismantling and suggest that these processes can perform all of the work of underwater cutting.

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method

  • Yan, Xu;Wang, Pengfei;Qing, Junyan;Wu, Shifa;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1443-1451
    • /
    • 2020
  • The objective of this study is to design a robust power control system for a small pressurized water reactor (PWR) to achieve stable power operations under conditions of external disturbances and internal model uncertainties. For this purpose, the multiple-input multiple-output transfer function models of the reactor core at five power levels are derived from point reactor kinetics equations and the Mann's thermodynamic model. Using the transfer function models, five local reactor power controllers are designed using an H infinity (H) mixed sensitivity method to minimize the core power disturbance under various uncertainties at the five power levels, respectively. Then a multimodel approach with triangular membership functions is employed to integrate the five local controllers into a multimodel robust control system that is applicable for the entire power range. The performance of the robust power system is assessed against 10% of full power (FP) step load increase transients with coolant inlet temperature disturbances at different power levels and large-scope, rapid ramp load change transient. The simulation results show that the robust control system could maintain satisfactory control performance and good robustness of the reactor under external disturbances and internal model uncertainties, demonstrating the effective of the robust power control design.

Factors Affecting Biofouling in Membrane Coupled Sequencing Batch Reactor

  • Lee, Chung-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.7-10
    • /
    • 2003
  • Factors affecting filtration performance were investigated in a Sequencing Batch Reactor (SBR) coupled with a submerged microfiltration module. Special bioreactors for aerobic and anoxic phases, respectively, were specifically designed in order to differentiate tile effect of Dissolved oxygen (DO) from that of mixing intensity on membrane filterability. DO concentration as well as mixing intensity proved to have a major influence on the membrane performance regardless of the SBR phase. A higher DO concentration resulted in a slower rise in TMP, corresponding to less membrane fouling.

  • PDF

Operation Algorithm and Drive Circuit in Power converter of DC reactor type fault Current Limiter (DC Reactor-Type 한류용 전력변환기의 제어 알고리즘 및 전력 소자 구동 회로)

  • 이승제;서호준;이찬주;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.334-336
    • /
    • 2002
  • This study is concerned with the operation algorithm and power switch drive circuit for DC Reactor Type High-Tc Superconducting Fault Current Limiter (SFCL). In the case of SFCL, Power switching operation algorithm are very important problem. So, this driving will determine the performance of SFCL. In this paper, we provide a simple algorithm and easy drive circuit. Through experiment we found that ideal is right.

  • PDF

A Three-Dimensional Operational Transient Simulation of the CANDU Core with Typical Reactor Regulating System

  • Yeom, Choong-Sub;Kim, Hyun-Dae;Park, Kyung-Seok;Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.500-505
    • /
    • 1995
  • This paper describes the results of simulation of a CANDU operational transient problem (re-startup after short shutdown) using the Coupled Reactor Kinetics(CRKIN) code developed previously with CANDU Reactor Regulating System(RRS) logic. The performance in the simulation is focused on investigating the behaviours of neutron power and regulating devices in accordance with the changes of xenon concentration following the operation of the RRS.

  • PDF

Control of a batch reactor using relay feedback (Relay Feedback을 이용한 회분식 반응기제어)

  • 이용수;이대욱;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.749-753
    • /
    • 1993
  • It is very difficult to control batch reactor with conventional linear controller due to its severe nonlinearity. To control the nonlinearity of batch reactor, we applied with relay feedback method and SOAS. The SOAS can be designed to work quite well, but it requires engineering effect and some knowledge about the process in order to get a satisfactory performance of the closed loop system For the applications to more reliable, further studies on robustness in various situations and process noises and would be required.

  • PDF

Control of a batch reactor using iterative learning (반복학습을 이용한 회분식 반응기의 제어)

  • 조문기;방성호;조진원;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.81-86
    • /
    • 1991
  • The iterative learning operation has been utilized in the temperature Control of a batch reactor. A generic form of feedback-assisted first-order learning control scheme was constructed and then various design and operation modes were derived through convergence and robustness analysis in the frequency domain. The proposed learning control scheme was then implemented on a bench scale batch reactor with the heat of reaction simulated by an electric heater. The results show a great improvement in the performance of control as the number of batch operations progressed.

  • PDF