• Title/Summary/Keyword: Reactive DC magnetron sputtering

Search Result 147, Processing Time 0.023 seconds

Diffusion barrier characteristics of molybdenum nitride films for ultra-large-scale-integrated Cu metallization (I); Surface morphologies and characteristics of sputtered molybdenum nitride films

  • Jeon, Seok-Ryong;Lee, You-Kee;Park, Jong-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1997
  • Surface morphologies and fundamental characteristics of molybdenum nitride films deposited by reactive dc magnetron sputtering were studied for application to Cu diffusion barrier. A phase transformation from Mo to $\gamma$-Mo$_2$N phase at 0.5$N_2$ flow ratio.($N_2$/(Ar+$N_2$)) equal to and larger than 0.2, whereas a second phase transformation to $\gamma$-MoN phase at 0.5 N2 flow ratio, With the variation of the N2 ratio the surface morphologies of the films were generally smooth except the cases of 0.2 and 0.3$N_2$ gas rations, where build-up of film stresses occurred. $\gamma$-Mo$_2$N film was found to crystallize at the deposition temperature of 40$0^{\circ}C$. The surfaces of $\gamma$-Mo$_2$N films deposited up to 40$0^{\circ}C$ were smooth, but the film deposited at 50$0^{\circ}C$ had very rough surface morphology. It seems that this was due to the building-up of thermal stresses at the high deposition temperature, which might lead to hillock formation.

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il;Almtoft, Klaus P.;Lee, Hyeon-Seok;Andersen, Inge H.;Qin, Dongdong;Bao, Ningzhong;Grimes, C.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1989-1992
    • /
    • 2012
  • We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).

Ceramic Pressure Sensors Based on CrN Thin-films (CrN박막 세라믹 압력센서)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Effect of annealing temperature on the structural and electrical properties of titanium nitride film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Kim, Chang-Soo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.36-37
    • /
    • 2006
  • Titanium oxy-nitride ($TiN_O_y$) thin films were deposited on $SiO_2$/Si substrates using reactive dc magnetron sputtering, and were then annealed at various temperatures in air ambient to incorporate oxygen into the films. The effect of annealing temperature on the structural and electrical properties of the films was investigated. The grain size of the films decreases with increasing annealing temperature. On the other hand, crystallinity of the films is independent of annealing temperature in air ambient. Resistivity of the films increases remarkably as an annealing temperature increases and temperature coefficience of resistance (TCR) of the films varies from a positive value to a negative value. The films annealed at $350^{\circ}C$ for 30 min exhibited a near-zero TCR value of approximately -5 ppm/K. The decrease of the grain size with increasing annealing temperature was attributed to an increase of oxygen concentration incorporated into the films during anncaling treatment.

  • PDF

ZnO Based All Transparent UV Photodetector with Functional SnO2 Layer (SnO2 기능성 박막을 이용한 ZnO 기반의 투명 UV 광검출기)

  • Lee, Gyeong-Nam;Lee, Joo-Hyun;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • All transparent UV photodetector based on ZnO was fabricated with structure of NiO/ZnO/$SnO_2$/ITO by using RF and DC magnetron sputtering system. ZnO was deposited with 4 inch ZnO target (purity 99.99%) for a quality film. In order to build p-n junction up, p-type NiO was formed on n-type ZnO by using reactive sputtering method. The indium tin oxide (ITO) which is transparent conducting oxide (TCO) was applied as a transparent electrode for transporting electrons. To improve the UV photodetector performance, a functional $SnO_2$ layer was selected as an electron transporting and hole blocking layer, which actively controls the carrier movement, between ZnO and ITO. The photodetector (NiO/ZnO/$SnO_2$/ITO) shows transmittance over 50% as similar as the transmittance of a general device (NiO/ZnO/ITO) due to the high transmittance of $SnO_2$ for broad wavelengths. The functional $SnO_2$ layer for band alignment effectively enhances the photo-current to be $15{\mu}A{\cdot}cm^{-2}$ (from $7{\mu}A{\cdot}cm^{-2}$ of without $SnO_2$) with the quick photo-responses of rise time (0.83 ms) and fall time (15.14 ms). We demonstrated the all transparent UV photodetector based on ZnO and suggest the route for effective designs to enhance performance for transparent photoelectric applications.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Crystalline Structure and Cu Diffusion Barrier Property of Ta-Si-N Films (Ta-Si-N박막의 조성에 따른 결정구조 및 구리 확산 방지 특성 연구)

  • Jung, Byoung-Hyo;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.95-99
    • /
    • 2011
  • The microstructure and Cu diffusion barrier property of Ta-Si-N films for various Si and N compositions were studied. Ta-Si-N films of a wide range of compositions (Si: 0~30 at.%, N: 0~55 at.%) were deposited by DC magnetron reactive sputtering of Ta and Si targets. Deposition rates of Ta and Si films as a function of DC target current density for various $N_2/(Ar+N_2)$ flow rate ratios were investigated. The composition of Ta-Si-N films was examined by wavelength dispersive spectroscopy (WDS). The variation of the microstructure of Ta-Si-N films with Si and N composition was examined by X-ray diffraction (XRD). The degree of crystallinity of Ta-Si-N films decreased with increasing Si and N composition. The Cu diffusion barrier property of Ta-Si-N films with more than sixty compositions was investigated. The Cu(100 nm)/Ta-Si-N(30 nm)/Si structure was used to investigate the Cu diffusion barrier property of Ta-Si-N films. The microstructure of all Cu/Ta-Si-N/Si structures after heat treatment for 1 hour at various temperatures was examined by XRD. A contour map that shows the diffusion barrier failure temperature for Cu as a function of Si and N composition was completed. At Si compositions ranging from 0 to 15 at.%, the Cu diffusion barrier property was best when the composition ratio of Ta + Si and N was almost identical.

Transport and optical properties of indium tin oxide films fabricated by reactive magnetron sputtering (제작 온도 및 산소 분압에 의존하는 인듐 주석 산화물의 전기적, 광학적 성질)

  • 황석민;주홍렬;박장우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.343-348
    • /
    • 2003
  • Indium tin oxide (ITO) thin films (170 nm) were grown by DC magnetron sputtering deposition on Coming glass substrates without a post annealing. The electrical transport and optical properties of the films have been investigated as a function of deposition temperature $T_{s}$ (10$0^{\circ}C$$\leq$ $T_{s}$$\leq$35$0^{\circ}C$) and oxygen partial pressure $P_{o_{2}}$, (0 $P_{o_{2}}$ $\leq$ 10$^{-5}$ torr). Films were deposited from a high density (99% of theoretical density) ITO target (I $n_2$ $O_3$: Sn $O_2$= 90 wt% : 10 wt%) made of ITO nano powders. With an increase of $T_{s}$ the electrical resistivity p of ITO thin films was found to decrease, but the mobility $\mu$$_{H}$ was found to increase. The carrier density nu shows the maximum value of 6.6$\times$10$^{20}$ /㎤ at $T_{s}$ = 30$0^{\circ}C$. At fixed Is, with an increase of the oxygen partial pressure, $n_{H}$ and $\mu$$_{H}$ were found to decrease, but p was found to increase. The minimum resistivity and maximum mobility values of the ITO films were found to be 0.3 mΩ.cm and 39.3 $\textrm{cm}^2$/V.s, respectively. The visible transmittance of the ITO films was above 80%.. 80%..

The Characteristics of Pt Micro Heater Using Aluminum Oxide as Medium Layer (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 특성)

  • Chung, Gwiy-Sang;Noh, Sang-Soo;Choi, Young-Kyu;Kim, Jin-Han
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.400-406
    • /
    • 1997
  • The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analyzed with increasing annealing temperature($400{\sim}800^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to $SiO_{2}$ and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analyzed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater, active area was smaller size, Pt micro heater had better thermal characteristics. The temperature of Pt micro heater with active area, $200{\mu}m{\times}200{\mu}m$ was up to $400^{\circ}C$ with 1.5watts of the heating power.

  • PDF