DOI QR코드

DOI QR Code

Crystalline Structure and Cu Diffusion Barrier Property of Ta-Si-N Films

Ta-Si-N박막의 조성에 따른 결정구조 및 구리 확산 방지 특성 연구

  • Received : 2010.12.07
  • Accepted : 2011.01.01
  • Published : 2011.02.27

Abstract

The microstructure and Cu diffusion barrier property of Ta-Si-N films for various Si and N compositions were studied. Ta-Si-N films of a wide range of compositions (Si: 0~30 at.%, N: 0~55 at.%) were deposited by DC magnetron reactive sputtering of Ta and Si targets. Deposition rates of Ta and Si films as a function of DC target current density for various $N_2/(Ar+N_2)$ flow rate ratios were investigated. The composition of Ta-Si-N films was examined by wavelength dispersive spectroscopy (WDS). The variation of the microstructure of Ta-Si-N films with Si and N composition was examined by X-ray diffraction (XRD). The degree of crystallinity of Ta-Si-N films decreased with increasing Si and N composition. The Cu diffusion barrier property of Ta-Si-N films with more than sixty compositions was investigated. The Cu(100 nm)/Ta-Si-N(30 nm)/Si structure was used to investigate the Cu diffusion barrier property of Ta-Si-N films. The microstructure of all Cu/Ta-Si-N/Si structures after heat treatment for 1 hour at various temperatures was examined by XRD. A contour map that shows the diffusion barrier failure temperature for Cu as a function of Si and N composition was completed. At Si compositions ranging from 0 to 15 at.%, the Cu diffusion barrier property was best when the composition ratio of Ta + Si and N was almost identical.

Keywords

References

  1. J. R. Lloyd, J. Clemens and R. Snede, Microelectron. Reliab., 39, 1595 (1999). https://doi.org/10.1016/S0026-2714(99)00177-8
  2. T. Nitta, T. Ohmi, T. Hoshi, S. Sakai, K. Sakaibara, S. Imai and T. Shibata, J. Electrochem. Soc., 140, 1131 (1993). https://doi.org/10.1149/1.2056211
  3. J. Tao, N. W. Cheung and C. Hu, IEEE Electron Device Lett., 14, 249 (1993). https://doi.org/10.1109/55.215183
  4. S. M. Sze and J. C. Irvin, Solid State Electron., 11, 599 (1968). https://doi.org/10.1016/0038-1101(68)90012-9
  5. N. Toyama, Solid State Electron., 26, 37 (1983). https://doi.org/10.1016/0038-1101(83)90159-4
  6. B. H. Cho, J. J. Yun and W. J. Lee, Jpn. J. Appl. Phys., 46(45), L1135 (2007). https://doi.org/10.1143/JJAP.46.L1135
  7. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi and D. P. Barkey, J. Electrochem. Soc., 152(11), H173 (2005). https://doi.org/10.1149/1.2041047
  8. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M.-A. Nicolet, J. Appl. Phys. 70(3), 1369 (1991). https://doi.org/10.1063/1.349594
  9. T. Oku, E. Kawakami, M. Uekudo, K. Takahiro, S. Yamaguchi and M. Murakami, Appl. Surf. Sci., 99, 265 (1996). https://doi.org/10.1016/0169-4332(96)00464-3
  10. Y. J. Lee, B. S. Suh, S. K. Rha and C. O. Park, Thin Solid Films, 320, 141 (1998). https://doi.org/10.1016/S0040-6090(97)01078-X
  11. Y. J. Lee, B. S. Suh and C. O. Park, Thin Solid Films, 357, 237 (1999). https://doi.org/10.1016/S0040-6090(99)00651-3
  12. Y. J. Lee, B. S. Suh, M. S. Kwon and C. O. Park, J. Appl. Phys., 85(3), 1927 (1999). https://doi.org/10.1063/1.369172
  13. J. -J. You and K. -S. Bae, Kor. J. Mater. Res., 17(9), 463 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.9.463