• Title/Summary/Keyword: Reaction solution

Search Result 3,401, Processing Time 0.044 seconds

Salty-taste Activation of Human Brain Disclosed by Gustatory fMRI Study (뇌기능 자기공명영상 장치를 이용한 짠맛 자극에 따른 인간 뇌의 반응에 대한 기초 연구)

  • Kim S.H.;Choi K.S.;Lee H.Y.;Shin W.J.;Eun C.K.;Mun C.W.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • Purpose : The purpose of this study is to observe the blood oxygen level dependent (BOLD) contrast changes due to the reaction of human brain at a gustatory sense in response to a salty-taste stimulation. Materials and Methods : Twelve healthy, non-smoking, right-handed male subjects (mean age: 25.6, range: 23-28 years) participated in this salty-taste stimulus functional magnetic resonance (fMRI) study. MRI scans were performed with 1.57 GE Signa, using a multi-slice GE-EPI sequence according to a blood-oxy-gen-level dependent (BOLD) experiment paradigm. Scan parameters included matrix size $128\times128$, FOV 250 mm, TR 5000 msec, TE 60 msec, TH/GAP 5/2 mm. Sequential data acquisitions were carried out for 42 measurements with a repetition time of 5 sec for each taste-stimulus experiments. Analysis of fMRI data was carried out using SPM99 implemented in Matlab. NaCl solution $(3\%)$ was used as a salty stimulus. The task paradigm consisted of alternating rest-stimulus cycles (30-second rest, 15-second stimulus) for 210 seconds. During the stimulus period, NaCl-solution was presented to the subject's mouth through plastic tubes as a bolus of delivered every 5 sec using -processor controlled auto-syringe pump. Results : Insula, frontal opercular taste cortex, amygdala and orbitofrontal cortex (OFC) were activated by a salty-taste stimulation $(NaCl,\;3\%)$ in the fMRI experiments. And dosolateral prefrontal cortex (DLPFC) was also significantly responded to salty-taste stimuli. Activation areas of the right side hemisphere were more superior to the left side hemisphere. Conclusion : The results of this study well correspond to the fact that both insula, amygdala, OFC, DLPFC areas are established as taste cortical areas by neuronal recordings in primates. Authors found that laboratory-developed auto-syringe pump is suitable for gustatory fMRI study. Further research in this field will accelerate to inquire into the mechanism of higher order gustatory process.

  • PDF

Effect of Added NH$_3$ to AMP on Absorption Rate for Simultaneous Removal of CO$_2$/NO$_2$ in Composite Absorption Process (복합흡수공정에서 CO$_2$/NO$_2$ 동시제거 시 AMP(2-amino-2-methyl-1-propanol)에 Ammonia 첨가가 흡수속도에 미치는 영향)

  • Seo, Jong-Beom;Choi, Won-Joon;Moon, Seung-Jae;Lee, Gou-Hong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2008
  • In this study, a blend of 2-amino-2-methyl-1-propanol (AMP) and ammonia (NH$_3$) was used to achieve high absorption rates for carbon dioxide (CO$_2$) as suggested at several literatures. The absorption rates of aqueous AMP and blended AMP+NH$_3$ solutions with CO$_2$ and nitrogen dioxide (NO$_2$) were measured using a stirred-cell reactor at 303 K. The effect of the added NH$_3$ to enhance absorption characteristics of AMP was studied. The performances were evaluated under various operating conditions. The absorption rates increased following the increase of the concentration of NH$_3$. The absorption rate of NH$_3$ blended into 30 wt.% AMP solution with NO$_2$ at 303 K was 12.6$\sim$32.6% higher than that of aqueous AMP solution without NH3. Also, the addition of 3 wt.% NH$_3$ to 30 wt.% AMP increased 48.2$\sim$41.6% values for the reactions with CO$_2$ and NO$_2$ at 303 K. Therefore, it clearly shows that the reaction rate of AMP with CO$_2$ and NO$_2$ can be increased by the addition of NH$_3$.

Kinetics and mechanism of chromate reduction by biotite and pyrite (흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작)

  • 전철민;김재곤;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.

Improvement of Analytical Method for Total Polysaccharides in Aloe vera Gel (알로에 베라(Aloe vera) 겔 중 총 다당체 시험법 개선)

  • Lee, Young-Joo;Kim, Yun-Je;Leem, Dong-Gil;Yoon, Tae-Hyung;Shin, Ji-Eun;Yoon, Chang-Yong;Kim, Jung-Hoon;Park, Mi-Sun;Kang, Tae-Seok;Jeong, Ja-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.271-276
    • /
    • 2012
  • This study intented to standardize the method for total polysaccharide, which is a functional marker for aloe vera gel in Korea. We used four lyophilized raw materials and commercial aloe gel products, certified as Health Functional Food by Korea Food and Drug Administration, including powder, solution, jelly, tablet and capsule, to optimize the analytical condition of dialysis and phenol-sulfuric acid reaction in polysaccharide analysis. The optimal conditions for polysaccharide analysis included 1 L water for dialysis and change 3 times for 24hr against 25 mL prepared sample solution. Validation test showed lower than 5% of coefficient of variation(CV) in intra-, interday validation in lyophilized raw materials and 4 types of commercial products. In inter-person and inter-laboratory validation with 4 persons from 4 different laboratories, CV(%) were 5.50 and 6.64 respectively. The linearity of polysaccharide analysis was assessed using 5 serial concentration of lyophilized raw materials(0.1, 0.2, 0.3, 0.4, 0.5%(w/v)). The results showed $R^2{\geq}0.995$ of high linearity. In the commercial aloe vera gel products, the results of reproductivity showed lower than 7.08% and revealed that the standardized method from this study ensured high precision for polysaccharide analysis.

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate (온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰)

  • Lee, Seon Yong;Chang, Bongsu;Kang, Sue A;Seo, Jieun;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.133-146
    • /
    • 2021
  • Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.

The studies on wrinkle recovery improvement for silk fabrics (견직물의 방추성 개선연구)

  • 김병호;정진영
    • Journal of Sericultural and Entomological Science
    • /
    • no.11
    • /
    • pp.23-29
    • /
    • 1970
  • This experiment is to improve the wrinkle recovery (W.R.) of silk fabrics. The silk fabrics is creased very well, and the crease is the serious defection of it. This experiment is to improve the nature by use of formaldehyde on fabrics. The reagents used were HCl, CH$_3$COOH, CaC$_2$, HCHO, Na$_2$CO$_3$, NH$_4$OH, NaOH and NaHCO$_3$. The silk fabrics was treated, to compare 1 he influence of conditions, by varying the quantities of reagents and the temperature of solution, and the reaction time. The cotton fabrics and the viscose rayon were sunk with the silk at the same condition to be compared the influence. 1) Those of the most suitable temperature to improve for the better W.R. are 75$^{\circ}C$ for silk, 35-45$^{\circ}C$ for cotton, and no particular temperature under 75$^{\circ}C$ for viscose rayon. 2) The W.R. improvements after treated at the temperature of 1) were 11% for silk and 33.4% for cotton. 3) There are the best treating time for every fabrics. They were 60 to 90 min. for viscose rayon when HAC Ras used for solvent. It took, however, 60min. of the best time for silk, 120 min. for cotton, and 40 min. for viscose rayon when acetic anhydride instead of HAC was used. 4) It was possible to improve 16.6% of W.R. for silk at the most suitable treating time, 25.0% for cotton, and 13.3% for viscose rayon. 5) Acetic anhydride was rather more effective to improve W.R. of both silk and viscose rayon than HAC. 6) Treating time was also shorter in case of using acetic anhydride than HAC. 7) The improvement of W.R. were 8.3% for silk at the 10 to 14 ml. of HCHO the best volume, 21. 5% for cotton at 18m!. of HCHO, and 70% of for viscose rayon at 14 to 18ml. of HCHO. 8) The most effective quantity of HCI is 14 ml. for both silk and cotton. The W.R. improvement of silk was 22.2%, and that of cotton 19.5%. 9) The W.R. of 83.3% the best for silk and 61. 6% for cotton were gained when 4.2gr. of NaHCO$_3$ brings down the percent of W.R. for both silk and cotton. 10) The more NaOH and NH$_4$OH as neutralizing agents, the less effectivity of W.R. until the quantities of the reagents are reached to a special range which are 3. 3m!. for silk and 3.3-6.6 ml. for cotton, and then we can see the W.R. increasing as the quantities of reagents are increased. These facts were evident in case of silk and cotton. We can also see with this fact that the reminder of 〔OH$\^$-/〕 neutralizing 〔CH$\^$+/〕in solution makes it possible to treat formaldehyde on fabrics. 11) Low curing temperature was comparatively better for silk, and high temperature better for cotton. 12) The result of this experiment shows that the Improvement of W.R. for silk was possible to 94% which means 22% W.R. increase compared to the untreated silk. This effect also shows that the improvement to W '||'&'||' W (wash and wear) of silk will be possible.

  • PDF

A Study of Molecular Size Distributions of Humic Acid by Photo-Oxidation and Ozonation (부식질의 광산화 및 오존산화에 있어서의 분자량 크기분포 변화 특성에 관한 연구)

  • Kim, Jong-Boo;Kim, Kei-Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.292-298
    • /
    • 2003
  • In this study, the photooxidation and ozonation of humic acid (HA) in aqueous solution were conducted and the treated HA samples at different reaction time were analyzed using ultrafiltration techniques to evaluate the change of their molecular size distributions with its DOC removal. Molecular size distribution of untreated HA showed 41.5% in higher molecular size fractions (>30,000 daltons) and 15.2% in much smaller molecular size fraction (<500 daltons). As UV irradiation time was increased, it was observed that the degradation of the large molecules of the fraction of >30,000 daltons into much smaller molecules was increased. In UV system, the HA molecules of the fraction of <500 daltons became significantly more and its percentage was increased from 35.3% (UV only irradiation) to 58.9% ($UV/TiO_2$) and 87.8% ($UV/H_2O_2$) in the presence of the photocatalysis. Otherwise, ozonation of HA produced mainly the fraction of medium molecular size ranging from 3,000 to 30,000 daltons with much lower portion (<~7%) in the fraction of <500 daltons. In ozone only system, the fraction of 30,000~10,000 daltons occupied in 41.5% at 60 min of ozonation time. In $O_3/H_2O_2$ system, the fraction of 30,000~10,000 daltons and 10,000~3,000 daltons occupied in 38.9% and 36.2% respectively. Based on these results, we suggested applicable treatment process which could be combined with $UV/H_2O_2$, $UV/TiO_2$ and $O_3$, $O_3/H_2O_2$ system for more effective removal of humic acid in water treatment.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.