• 제목/요약/키워드: Reaction morphology

검색결과 829건 처리시간 0.023초

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping;Lang, Chaopeng;Li, Bingyan;Wen, Kejun;Li, Mingdong
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.281-289
    • /
    • 2022
  • Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.

γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성 (Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process)

  • 조현란;김숙현;박병기
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

양극반응으로 제조된 다공질 WO3 박막의 가스센서 특성 (The gas sensing characteristic of the porous tungsten oxide thin films based on anodic reaction)

  • 이홍진;송갑득;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, the gas responses of tungsten oxide films prepared by anodic reaction was discussed. Sensing electrodes and heating electrodes were patterned by photolithography method on quartz substrate. Porous tungsten oxide was fabricated in electrolyte solutions of 5 % HF (HF :$C_2H_6OH:H_2O$=3 : 2 : 20) by anodic reaction. The anodic reaction with metal (platinum wire) as a cathode and the sensing device as an anode was conducted under the various reaction times (1-10 min) at 10 mA/$cm^2$ The surface structure and morphology of the fabricated sensor have been analysed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). All the peaks of XRD results were well indexed to the pure phase pattern. The average diameter of the porous tungsten oxide surface were ranged about 100 nm. The fabricaed sensor showed good sensitivity to 200 ppm toluene at operating temperature of $250^{\circ}C$.

Heterogeneous Catalysts for Hydrogen Generation Based on Ru-Incorporated Hydroxyapatite

  • Jaworski, Justyn Wayne;Kim, Dae-Hyun;Jung, Kyeong-Mun;Kim, So-Hue;Jeong, Jong-Ok;Jeon, Hyo-Sang;Min, Byoung-Koun;Kwon, Ki-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2011
  • Hydrolysis of sodium borohydride provides a safe and clean approach to hydrogen generation. Having the proper catalytic support for controlling this reaction is therefore a valuable technology. Here we demonstrate the capability of hydroxyapatite as a novel catalytic support material for hydrogen generation. Aside from being inexpensive and durable, we reveal that Ru ion exchange on the HAP surface provides a highly active support for sodium borohydride hydrolysis, exemplifying a high total turnover number of nearly 24,000 mol $H_2$/ mol Ru. Moreover, we observe that the RuHAP support exhibits a high catalytic lifetime of approximately one month upon repeated exposure to $NaBH_4$ solutions. In addition to examining surface area effects, we also identified the role of complex surface morphology in enhancing hydrolysis by the catalytic transition metal covered surface. Particularly, we found that a polycrystalline RuHAP catalytic support exhibits shorter induction times for the initial bubble formation as well as increased hydrogen generation rates as compared to a single crystal supports. The independent factor of a complex surface morphology is believed to provide enhanced sites for gas release during the initial stages of the reaction. By demonstrating the ability to shorten induction time and enhance catalytic activity through changes in surface morphology and Ru content, we find it feasible to further explore this catalyst support in the construction of a practical hydrogen generator.

  • PDF

Quantitative Evaluation on Photocatalytic Activity of Anatase TiO2 Nanocrystals in Aqueous Solution

  • Jeon, Byungwook;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.96-101
    • /
    • 2015
  • Quantitative evaluation of photocatalytic activity of oxide nanoparticles in aqueous solution is quite challenging in that the kinetic reaction rate is determined by a complicated interplay among various limiting factors such as light scattering and absorption, diffusion and adsorption of reactants in condensed liquid phase, photoexcited charge separation and recombination rate, and the exact nature of active sites determined by detailed morphology and crystallinity of nanocrystals. Here, we present our simple experimental results showing that the kinetic regime of a typical photocatalytic degradation experiment over UV-irradiated $TiO_2$ nanoparticles in aqueous solution is in that dominated by the photoactivity of $TiO_2$ and its concentration. This result lays a firm ground of using the measured kinetic reaction rate in evaluating photocatalytic efficiency of oxide nanocrystals under evaluation.

HAuCl4의 산화-환원 반응에 의한 금 나노 입자 (Preparation of Gold Nanoparticles by Reduction-Oxidation Reaction of HAuCl4)

  • 우엔 테 쭝;김동주;김교선
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.229-232
    • /
    • 2009
  • We prepared gold nanoparticles (Au NPs) by reduction-oxidation reaction between $HAuCl_4$ and trisodium citrate and measured the size and morphology of Au NPs by TEM for various molar ratios of $HAuCl_4$ to citrate and for various concentrations of $HAuCl_4$. UV-vis spectroscopy was used to characterize the optical properties of Au NPs. Au NPs in the size range from 14.3 nm to 20.3 nm were prepared with monodisperse distribution.

  • PDF

합성 WS$_2$ 고체윤활제의 특성 분석 (Characterization of Synthesized WS$_2$ Solid Lubricant)

  • 신동우;윤대현;최인혁;김인섭
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.211-216
    • /
    • 1997
  • The tungsten disulfide (WS$_2$) solid lubricant was synthesized by two different reaction processes, and the chemical and physical characteristics of synthesized WS$_2$ powder were analyzed in terms of the average particle size, morphology, crystalline phase. The solid WO$_3$ powder with the average size of 0.2 $\mu$m was reacted with CS$_2$ gas flowed with N$_2$ or 96% N$_2$ + 4% H$_2$ forming gas for 36 h and 24 h at 900$\circ$C respectively. In the case of vapour phase transport method, the 3.5 wt% iodine was added as a vapour transport reagent into the composition of tungsten and sulfur powders maintaining a constant molar ratio of W : S = 1 : 2.2. The mixture was then heat treated at 850$\circ$C for 2 weeks in vacuum The reaction product obtained showed the average size of 12 $\mu$m and the hexagonal plate shape of typical solid lubricant with 2H-WS$_2$ crystalline phase.

  • PDF

Microwave Synthesis of Hydrotalcite by Urea Hydrolysis

  • Yang, Zhiqiang;Choi, Kwang-Min;Jiang, Nanzhe;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2029-2033
    • /
    • 2007
  • Hydrotalcite, layered double hydroxides (LDH), with hexagonal morphology has been rapidly synthesized by microwave reaction within 1 hour by urea hydrolysis from homogeneous solution. Different synthesis parameters, Mg/Al molar ratio, microwave reaction temperature and microwave power were systematically investigated. Pure hydrotalcite phase was obtained for Mg/Al ratios of 2:1 and 3:1, and higher reaction temperature gave higher crystallinity. The hydrotalcite synthesized at 600W power shows the highest crystallinity and more homogeneous crystal size distribution. The hydrotalcite samples were characterized by powder X-ray diffraction (XRD), simultaneous thermogravimetric/differential thermal analysis (TG/DTA), Fourier Transform Infrared (FT-IR) and Scanning electron micrograph (SEM).

Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction

  • Maleki, Ali;Hajizadeh, Zoleikha;Abbasi, Hamid
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.42-49
    • /
    • 2018
  • A citric acid functionalized graphene oxide nanocomposite was successfully synthesized and the structure and morphology of the nanocatalyst were comprehensively characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, X-ray diffraction patterns, atomic force microscopy images, scanning electron microscopy images, transmission electron microscopy images, and thermogravimetric analysis. The application of this nanocatalyst was exemplified in an important condensation reaction to give imidazole derivatives in high yields and short reaction times at room temperature. The catalyst shows high catalytic activity and could be reused after simple work up and easy purification for at least six cycles without significant loss of activity, which indicates efficient immobilizing of citrate groups on the surface of graphene oxide sheets.

자전연소합성 반응중 속빈 TiC 섬유의 형성 기구 (Forming Mechanism of TiC Hollow Fibers during Self-Propagating High Temperature Synthesis)

  • 윤존도;방환철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.332-337
    • /
    • 2000
  • Forming mechanism of fibrous TiC during self-propagating high temperature synthetic reaction was analyzed and suggested. It was revealed that critical temperature for the stable fiber formation was not the melting point of TiC, but the eutectic reaction temperature of TiC and C. Minimum amount of TiC diluent addition required to form fibers was calculated to be 25.6%, which was consistent with the experimental result. Synthesized fibers were found hollow tube-like. The morphology was explained by the diffusion rates of C and Ti in TiC, and by the molar volume chnage of C during the reaction. Expanding shell model was suggested for the hollow fiber formation mechanism.

  • PDF