• Title/Summary/Keyword: Reaction Heat

Search Result 1,878, Processing Time 0.031 seconds

A study on reaction heat measurement and its applications of industrial batch reactor (산업용 회분식 반응기에서의 반응열 측정과 응용에 관한 연구)

  • 방성호;이용수;이석호;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.931-936
    • /
    • 1992
  • In operational pont of view, the batch reactor is quite different from the continuous reactor in that it is completely in unsteady states. This makes process variables swing over wide ranges and the process disclose its nonlinerarities. For the most part these nonlinearities are due to reaction heat. Accordingly it is very important to know the informations of reaction heat. This paper presents the method of reaction heat measurement in industrial batch reator which furnishes the limited measurable points. The informations of reaction heat are utilized in modeling of the batch reactor as well as deciding the stability and control variables.

  • PDF

Study on Combustion Characteristics of H2/CO Synthetic Gas (H2/CO 합성가스의 연소 특성에 관한 연구)

  • Kim, Tae-Kwon;Park, Jeong;Cho, Han-Chang
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.689-698
    • /
    • 2008
  • Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.

Fischer-Tropsch synthesis in the novel system: cobalt metallic foam catalyst and heat-exchanger typed reactor (코발트 금속 폼 촉매와 열교환형 반응기를 이용한 Fischer-Tropsch 합성 반응)

  • Yang, Jung-Il;Yang, Jung Hoon;Ko, Chang-Hyun;Kim, Hak-Joo;Chun, Dong Hyun;Lee, Ho-Tae;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.133.2-133.2
    • /
    • 2010
  • Fischer-Tropsch synthesis (FTS) was carried out in heat-exchanger typed reactor with cobalt metallic foam catalyst. Considering the heat and mass transfer limitations in the cobalt catalyst, a Co-foam catalyst with an inner metallic foam frame and an outer cobalt catalyst was developed. The Co-foam catalyst was highly selective toward liquid hydrocarbon production and the liquid hydrocarbon productivity at $203^{\circ}C$ reached to $52.5ml/(kg_{cat}{\cdot}h)$, which was higher than that obtained by the Co-pellet. Furthermore, the heat-exchanger typed reactor was developed to efficiently control the highly exothermic reaction heat. The reaction heat generated in the FTS reaction on the cobalt active site was easily transferred to reactor wall by the metallic foam in the catalyst and the transferred reaction heat was directly removed by the hot oil which circulated the wall side of the heat-exchanger typed reactor.

  • PDF

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Structural Changes of the Spinach Photosystem II Reaction Center After Inactivation by Heat Treatment

  • Jang, Won-Cheoul;Tae, Gun-Sik
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.58-62
    • /
    • 1996
  • The structural changes in the electron donor side of the PSII reaction center have been monitored since heat treatment ($45^{\circ}C$ for 5 min) of thylakoids is known to decrease the oxygen evolving activity. In heat-treated spinach chloroplast thylakoids, the inhibitory effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the electron transport activity of the PSII reaction center from diphenyl carbazide to dichlorophenolindophenol became reduced approximately 3.8 times and [$^{14}C$]-labeled DCMU binding on the D1 polypeptide decreased to 25~30% that of intact thylakoid membranes, implying that the conformational changes of the DCMU binding pocket, residing on the D1 polypeptide, occur by heat treatment. The accessibility of trypsin to the $NH_2$-terminus of the cytochrome b-559 ${\alpha}$-subunit, assayed with Western blot using an antibody generated against the synthetic peptide (Arg-68 to Arg-80) of the COOH-terminal domain, was also increased, indicating that heat-treatment caused changes in the structural environments near the stromal side of the cytochrome b-559 ${\alpha}$-subunit, allowing trypsin more easily to cleave the $NH_2$-terminal domain. Therefore, the structural changes in the electron donor side of the PSII reaction center complexes could be one of the reasons why the oxygen evolving activity of the heat-treated thylakoid membranes decreased.

  • PDF

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

An Experimental Study of Heat and Mass Transfer During Absorption and Desorption Processes in a Hydride Material Bed (수소저장합금 반응용기에서 수소 흡.탈장과정에서의 열 및 물질전달 특성에 관한 실험적인 연구)

  • 박찬우;강병하;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.202-211
    • /
    • 1995
  • Heat and hydrogen transfer characteristics have been experimentally investigated for a hydride reaction bed, in which hydride material LaN $i_{4,7}$A $l_{0.3}$ is contained for hydrogen storage. This problem is of particular interest in the design of metal hydride devices such as metal-hydride refrigerators, heat pumps, or metal-hydride storage units. Transient behavior of hydrogen transfer through the hydride materials as well as heat transfer is studied during absorption and desorption processes in detail. The experimental results obtained indicate that the mass flow of the hydrogen is strongly affected by the governing parameters, such as the initial pressure of the reaction bed, absorption or desorption period, and cooling or heating temperature. These mass transfer results are along with the heat transfer rate between hydride materials and heat transfer medium in the reaction bed.d.d.

Characteristic of heat storage/release in chemical heat pump using the calcined dolomite (소성 Dolomite를 이용한 화학열펌프내의 축·방열특성)

  • Hong, Min-Hyuk;Lee, Young-Sei;Choi, Hyun-Kuk;Park, Young-Hea;Kim, Jong-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.191-196
    • /
    • 2005
  • This study was carried out to investigate the heat storage/release characteristics of the thermochemical reaction of the calcined dolomite with the packed bed shape experimental apparatus for development of chemical heat pump system. In the present study, it was found that MgO of the calcined dolomite was not hydrated during the hydration process under the experimental conditions. Therefore, the MgO of the calcined dolomite can be regard as an inert material. As a result, it was found that all of CaO packed kept the reaction temperature of about $510^{\circ}C$ through the entire part of the bed. The dehydration reaction was incurred first at the wall side area as the supplied heat was transferred through the wall side into the packed bed. As a result of the temperature and concentration spread, the reaction was completed at the wall side progressed into the center.

  • PDF

An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance (장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구)

  • Yoon, Seok-Mann;Moon, Seung-Hyun;Lee, Seung-Jae;Choi, Soon-Young
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2010
  • A third of primary energy is lost as a waste heat. To improve this inefficient use of energy, systems using chemical reaction have been suggested and studied. In this study, methanol decomposition/synthesis reaction as a chemical reaction was selected for long time heat storage and long distance heat transport system because of safe, cheap and gaseous product. The purpose of this study is to find the optimal conditions in the methanol decomposition and synthesis reactions for long distance heat transport. Several parameters such as reaction temperature, pressure, $H_2$/CO ratio, space velocity, catalyst particle size were tested to find the effects on the reaction rates for the methanol synthesis. And the reaction temperature, space velocity, catalyst particle size were tested to find the effects on the production concentration for the methanol decomposition.

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.