• Title/Summary/Keyword: Reaction Degree

Search Result 1,094, Processing Time 0.023 seconds

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

A Study on the Spatial evaluation Model of the Women's Hospital - Focused on the Spatial Evaluation Matrix by the Patient - (여성 전문병원 공간평가모델에 관한 연구 - 환자관점에서의 공간평가 매트릭스 중심으로 -)

  • 주진형
    • Korean Institute of Interior Design Journal
    • /
    • no.38
    • /
    • pp.65-74
    • /
    • 2003
  • The purpose of this study Is to find out the design guideline for women's hospital focusing on the patient needs. The results of research are as follows: 1) As a basic frame of evaluation model, the quality of service of medical facilities and patients' reaction to the physical environment are fixed as a variable called' satisfaction degree'. This study analyzes the influence on space efficiency evaluation according to the difference of types through basic model (Model I-1,2) as verification model to identify the difference between satisfaction degree of outpatients and that of inpatients. 2) The difference of satisfaction degree about the hospital facilities by space evaluation matrix is according to the types of inpatients and to space importance. 3) The control of importance degree about the interior facilities of the hospital according to the specific character of the hospital is necessary. Maintenance of the status quo, or reduction, or expansion is needed according to the satisfaction degree corresponding to the importance degree. Finally, the model is used to for the planning & design for the future women's hospital.

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree (메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol (Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구)

  • Sho, Soon-Yong;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2001
  • The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 $^{\circ}C$ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

  • PDF

Melt Grafting of Citraconic Acid onto an Ethylene-Propylene-Diene Terpolymer (EPDM) -Effect of Reaction Conditions and Initiator Type on the Melt Grafting of Citraconic Acid onto EPDM- (EPDM고무와 씨트라코닉산의 melt grafting - 반응조건과 개시제에 따른 영향 연구 -)

  • Kim, Jung-Soo;Bae, Jong-Woo;Lee, Jin-Hyok;Oh, Sang-Taek;Kim, Gu-Ni;Lee, Young-Hee;Kim, Han-Do
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Melt grafting of citraconic acid (CCA) onto an ethylene-propylene-diene terpolymer (EPDM) with various peroxide initiators was performed using a Haake Rheocorder. Finding the optimum running condition and concentration is critical for effective grafting and performance of grafted material. Therefore, this study focused on the effects of mixing (reaction) condition and monomer/initiator dosages on the grafting degree, grafting efficiency and crosslinking degree (gel content), melt flow index and mechanical properties of CCA-g-EPDM. As the grafting degree/crosslinking degrees increased, the tensile strength increased significantly, but elongation at break and melt flow index decreased. The initiator 2,5-dimethyl-2,5-di(tert-butyl peroxy)-hexane (T-101) appeared to meet for the best grafting(2.31%). The grafting degree increased markedly with increasing monomer CCA/initiator T-101 contents. The grafting degree also increased with increasing mixing temperature/time, and then leveled off or decreased/increased a little. The optimum monomer/initiator dosages and reaction temperature/time were found to be about 5/0.05 wt% and $180^{\circ}C$/15min, respectively.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

A Study on Support by Families of Patients with pulmonary Tuberculosis and Compliance with Sick Role Behavior (결핵 환자의 가족 지지와 환자 역할 행위에 관한 연구)

  • 서숭미
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.4
    • /
    • pp.555-568
    • /
    • 1993
  • The purposed of this study was to identify compliance with sick role behavoir and support by families of patients with pulmonary tuberculosis and to identify factors affecting these variables md factors that increase compiance with sick role behavoior This study was a survey design done in K. general hospital from 1992. 7 1 to 1992. 7. 20. The data were collected through personal interviews with 70 subjects who had pulmonary tuberculosis. A questionnaire was used to collect the data. 1. Demographic characteristics of the subjects The factor causing the tuberculosis for 28.6% of the subjects was that they lived with another family member who had pulmonary tuberculosis, 11.4% of the subjects had a family member who died of tuberculosis, 24.3% of the subjects had experienced an adverse reaction to medication. Gastroenteric disorders(28.6%) had the highest rate for this kind of adverse reaction to medication. 2. Support by families for patients with pulmonary tuberculosis The items which showed high support for compliance were taking medicine regularly(80.0% ) eat-ing a balanced diet(80.0%), loving them(84.3%), taking care of them(82.8%), getting the support from people for being sick(81.1%) The items which showed low support for compliance were meeting relatives or clergymen(20%), talking with the people suffering from pulmenary tuberculosis to relieve frustrated because they were not recovering. 3. General characteristics and family support The degree of family support showed that 75 was highest score and 30, the lowest score with 55.5(74. 1%)the average score. The degree of family support appeared similar in cases where the person was married and where the person did not have a family member with pulmonary tuberculosis(P〈.01) 4. The degree of compliance with sick role behavior by patients with pulmonary tuberculosis The degree of compliance with sick role behavior showed that 100 was the highest scoure47, the low-est score and 76.4, the average score out of a Possible score of 100. 5. Correlation between compliance with sick role behavior and family support The compliance with sick role behavior and family support showed a positive correlation(r=.2094 p〈.5) So for patients with pulmonary tuberculosis. compliance with sick role behavior is related to the sup-port given by their families.

  • PDF

Model System Study for the Mutagenicity of Sugar-Glycine Systems

  • Lee, Jae-Hwan;Shin, Han-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.839-841
    • /
    • 2008
  • The mutagenicity after heating of different sugars (glucose, fructose, galactose, and tagatose) on the non-enzymatic browning reaction in different sugars and glycine model system was investigated. The model system containing 0.2 M glycine and 0.2 M of different sugars in 10 mL water was heated at $150{\pm}5^{\circ}C$ for 30 min. After heating, degree of non-browning reaction intensity and mutagenicity using Salmonella typhimurium TA 98 were examined. Heated glycine model systems containing different sugars increased their mutgenicity ranged from 30 to 372 revertant colonies. After heating for 40 min, mutagenicity was achieved with glycine model systems containing 4 different sugars with by 145, 356, 206, and 369 revertants per plate, respectively. The glycine model systems containing fructose or tagatose were significantly (p<0.05) higher mutagenic activity than glycine model systems containing glucose or galactose after 40 min of heating. The linear regression between Maillard reaction intensity and mutagenic activities (slope=32.38, $R^2=0.93$) indicates that mutagenicity could be fully ascribed to Maillard reaction products.

Antibacterial Activity of Lysozyme-Galactomannan Conjugate against Escherichia coli

  • Hwang, Jae-Kwan;Kim, Hyun-Jin;Park, Moon-Jung;Shin, Hae-Hun;Pyun, Yu-Ryang
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.320-323
    • /
    • 1998
  • Lysozyme was covalentyl conjugated with galactomannan through a amino-carbonyl reaction between the lysine $\varepsilon$-amino groups of lysozyme and the reducing ends of galactomannan at a relative humidity of 79% and 6$0^{\circ}C$. The resulting lysozyme-galactomannan conjugate (LGC) was investigated for its antibacterial activity against Escherichia coli. Lysozyme alone did not exhibit antibacterial activity against E. coli. in contrast , significant bactericidal effect was observed for LGC, depending on the reaction temperature. The degree of conjugation between lysozyme and galactomannan was dependent on the incubation time, which affected the antibacterial efficiency against E. coli. This study demonstrated that the amino-carbonyl reaction between lysozyme and galactomannan could be a potential tool to modify lysozyme toward broadening its antibacterial spectrum to Gram-negative bacteria.

  • PDF