• Title/Summary/Keyword: Re-chlorination

Search Result 7, Processing Time 0.022 seconds

Evaluation of inactivation kinetics on pathogenic microorganisms by free chlorine/UV hybrid disinfection system (전해 염소수/자외선 결합 시스템을 이용한 병원성 미생물의 불활성화 키네틱스 평가)

  • Seo, Young-Seok;Kim, Aerin;Cho, Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.

Chlorination of TRU/RE/SrOx in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent

  • Yoon, Dalsung;Paek, Seungwoo;Lee, Sang-Kwon;Lee, Ju Ho;Lee, Chang Hwa
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • Thermodynamically, TRUOx, REOx, and SrOx can be chlorinated using ammonium chloride (NH4Cl) as a chlorinating agent, whereas uranium oxides (U3O8 and UO2) remain in the oxide form. In the preliminary experiments of this study, U3O8 and CeO2 are reacted separately with NH4Cl at 623 K in a sealed reactor. CeO2 is highly reactive with NH4Cl and becomes chlorinated into CeCl3. The chlorination yield ranges from 96% to 100%. By contrast, U3O8 remains as UO2 even after chlorination. We produced U/REOx- and U/SrOx-simulated fuels to understand the chlorination characteristics of the oxide compounds. Each simulated fuel is chlorinated with NH4Cl, and the products are dissolved in LiCl-KCl salt to separate the oxide compounds from the chloride salt. The oxide compounds precipitate at the bottom. The precipitate and salt phases are sampled and analyzed via X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The analysis results indicate that REOx and SrOx can be easily chlorinated from the simulated fuels; however, only a few of U oxide phases is chlorinated, particularly from the U/SrOx-simulated fuels.

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Chlorine Residual Prediction in Drinking Water Distribution System Using EPANET (EPANET을 이용한 상수도 관망의 잔류염소 거동 예측)

  • 유희종;김주원;정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In this study, chlorine dose at water storage tank was predicted to meet the recommended guideline for free chlorine residual in drinking water distribution system, using EPANET which is a computer program that performs extended Period simulation of hydraulic and water quality behavior within pressurized pipe networks. The results may be summarized as follows. The decay of chlorine residual by season varied considerably in the following order; in summer ($25^{\circ}C$) > spring and fall (15$^{\circ}C$) > winter (5$^{\circ}C$). For re-chlorination at water storage tank by season, season-varying chlorine dose was required at its maximum of 1.00 mg/l in summer and minimum of 0.40 mg/l in winter as free chlorine residual. The decay of chlorine residual through out the networks increased with water age spent by a parcel of water in the network except for some points with low water demand. In conclusion, the season-varying chlorine dose as well as the monitoring of water quality parameters at the some points which showed high decay of chlorine residual may be necessary to deliver the safe drinking water.

Effect of raw water quality decrease on water treatment costs (상수원수 수질저하가 정수처리 비용에 미치는 영향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • In this study, effects of five raw water quality parameters (turbidity, odor compounds caused by algae, filter clogging caused by algae, pH increase caused by algae, and organic matter) on improvements and operations costs of typical water treatment plant (WTP) were estimated. The raw water quality parameters were assumed the worst possible conditions based on the past data and costs were subsequently estimated. Results showed that new water treatment facilities were needed, such as a selective intake system, an advanced water treatment processes, a dual media filter, a carbonation facility, and a re-chlorination facility depending on water quality. Furthermore, changes needed to be made in WTP operations, such as adding powered activated carbon, increasing the injection of chlorine, adding coagulation aid, increasing the discharge of backwashed water, and increasing the operation time of dewatering facilities. Such findings showed that to reliably produce high-quality tap water and reduce water treatment costs, continuous improvements to the quality of water sources are needed.

Prediction of residual chlorine using two-component second-order decay model in water distribution network (이변량 감소모델을 적용한 배급수관망에서의 잔류염소농도 예측 및 이의 활용)

  • Kim, Young Hyo;Kweon, Ji Hyang;Kim, Doo Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.287-297
    • /
    • 2014
  • It is important to predict chlorine decay with different water purification processes and distribution pipeline materials, especially because chlorine decay is in direct relationship with the stability of water quality. The degree of chlorine decay may affect the water quality at the end of the pipeline: it may produce disinfection by-products or cause unpleasant odor and taste. Sand filtrate and dual media filtrate were used as influents in this study, and cast iron (CI), polyvinyl chloride (PVC), and stainless steel (SS) were used as pipeline materials. The results were analyzed via chlorine decay models by comparing the experimental and model parameters. The models were then used to estimate rechlorination time and chlorine decay time. The results indicated that water quality (e.g. organic matter and alkalinity) and pipeline materials were important factors influencing bulk decay and sand filtrate exhibited greater chlorine decay than dual media filtrate. The two-component second-order model was more applicable than the first decay model, and it enabled the estimation of chlorine decay time. These results are expected to provide the basis for modeling chlorine decay of different water purification processes and pipeline materials.

Re-chlorination facility design to cope with virus intrusion in water distribution system (상수도 관망 내 바이러스 유입 대응을 위한 재염소 시설 설계)

  • Kim, Beomjin;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.277-287
    • /
    • 2024
  • Water distribution system (WDS) is exposed to various water quality incidents during its operation. This study utilized Quantitative Microbial Risk Assessment (QMRA) to analyze the risk associated with potential virus intrusion in WDSs. Additionally, the study determined the location and operation of rechlorination facilities to minimize potential risk. In addition, water quality resilience was calculated to confirm that the chlorine concentration maintains within the target range (0.1-1.0 mg/L) during normal operation. Hydraulic analysis was performed using EPANET, while EPANET-MSX was linked to simulate the reactions between viruses and chlorine. The proposed methodology was applied to the Bellingham network in the United States, where rechlorination facilities capable of injecting chlorine concentrations ranging from 0.5 mg/L to 1.0 mg/L were considered. Results indicated that without rechlorination facilities, the Average risk was 0.0154. However, installing rechlorination facilities and injecting chlorine at a concentration of 1.0 mg/L could reduce the Average risk to 39.1%. It was observed that excessive chlorine injection through rechlorination facilities reduced water quality resilience. Consequently, a rechlorination facility with a concentration of 0.5 mg/L was selected, resulting in a reduction of approximately 20% in average risk. This study provides insights for designing rechlorination facilities to enhance preparedness against potential virus ingress in the future.