DOI QR코드

DOI QR Code

Evaluation of inactivation kinetics on pathogenic microorganisms by free chlorine/UV hybrid disinfection system

전해 염소수/자외선 결합 시스템을 이용한 병원성 미생물의 불활성화 키네틱스 평가

  • Seo, Young-Seok (Division of Biotechnology, Chonbuk National University) ;
  • Kim, Aerin (Division of Biotechnology, Chonbuk National University) ;
  • Cho, Min (Division of Biotechnology, Chonbuk National University)
  • 서영석 (전북대학교 생명공학부) ;
  • 김애린 (전북대학교 생명공학부) ;
  • 조민 (전북대학교 생명공학부)
  • Received : 2019.08.27
  • Accepted : 2019.10.14
  • Published : 2019.10.15

Abstract

Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.

Keywords

References

  1. Allerberger, F. and Wagner, M. (2010). Listeriosis: a resurgent foodborne infection, Clin. Microbiol. Infect., 16(1), 16-23. https://doi.org/10.1111/j.1469-0691.2009.03109.x
  2. Cho, M., Chung, H., and Yoon, J. (2003). Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine, Environ. Sci. Technol., 37(10), 2134-2138. https://doi.org/10.1021/es026135h
  3. Cho, M., Chung, H., Choi, W., and Yoon, J. (2004). Linear correlation between inactivation of E. coli and OH radical concentration in $TiO_2$ photocatalytic disinfection, Water Res., 38(4), 1069-1077. https://doi.org/10.1016/j.watres.2003.10.029
  4. Cho, M., Chung, H., Choi, W., and Yoon, J. (2005). Different inactivation behaviors of MS-2 phage and Escherichia coli in $TiO_2$ photocatalytic disinfection, Appl. Environ. Microbiol., 71(1), 270-275. https://doi.org/10.1128/AEM.71.1.270-275.2005
  5. Cho, M., Kim, J., Kim, J.Y., Yoon, J., and Kim, J.H. (2010). Mechanisms of Escherichia coli inactivation by several disinfectants, Water Res., 44(11), 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
  6. Cho, M., Gandhi, V., Hwang, T.M., Lee, S., and Kim, J.H. (2011). Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with $UV/H_2O_2$ followed by free chlorine, Water Res., 45(3), 1063-1070. https://doi.org/10.1016/j.watres.2010.10.014
  7. Dhandole, L.K., Seo, Y.S., Kim, S.G., Kim, A., Cho, M., and Jang J.S. (2019). A mechanism study on the photocatalytic inactivation of Salmonella typhimurium bacteria by $Cu_xO$ loaded rhodium-antimony co-doped $TiO_2$ nanorods, Photochem. Photobiol. Sci., 18(5), 1092-1100. https://doi.org/10.1039/C8PP00460A
  8. Fang, J., Fu, Y., and Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system, Environ. Sci. Technol., 48(3), 1859-1868. https://doi.org/10.1021/es4036094
  9. Glass, R.I., Parashar, U.D., and Estes, M.K. (2009). Norovirus gastroenteritis, N. Engl. J. Med., 361(18), 1776-1785. https://doi.org/10.1056/NEJMra0804575
  10. Hemida, M.G., Rerera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Saif, L., Alnaeem, A., and Peiris, M. (2013). Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013, Euro Surveill., 18(50), 20659. https://doi.org/10.2807/1560-7917.ES2013.18.50.20659
  11. Hwang, T.M., Nam, S., Kwon, M., and Kang, J.W. (2017). Removal of microorganic pollutants based on reaction model of UV/chlorine process, J. Korean Soc. Water Wastewater, 31(1), 73-81. https://doi.org/10.11001/jksww.2017.31.1.073
  12. Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schröder, F., and Rennau, J. (1999). Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., 29(7), 859-866. https://doi.org/10.1023/A:1003650220511
  13. Leclerc, G.J., Tartera, C., and Metcalf, E.S. (1998). Environmental regulation of Salmonella typhi invasion-defective mutants, Infect. Immun., 66(2), 682-691. https://doi.org/10.1128/IAI.66.2.682-691.1998
  14. Lee, J.E., Zoh, K.D., and Ko, G.P. (2008). Inactivation and UV disinfection of murine norovirus with $TiO_2$ under various environmental conditions, Appl. Environ. Microbiol., 74(7), 2111-2117. https://doi.org/10.1128/AEM.02442-07
  15. Lee, J.E. and Ko, G.P. (2013). Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without $TiO_2$, Water Res., 47(15), 5607-5613. https://doi.org/10.1016/j.watres.2013.06.035
  16. Oguma, K., Katayama, H., and Ohgaki, S. (2004). Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp, Water Res., 38(11), 2757-2763. https://doi.org/10.1016/j.watres.2004.03.024
  17. Parashar, U.D., Gibson, C.J., Bresee, J.S., and Glass, R.I. (2006). Rotavirus and severe childhood diarrhea, Emerging Infect. Dis., 12(2), 304-306. https://doi.org/10.3201/eid1202.050006
  18. Peiris, J.S.M., Poon, L.L.M., and Guan, Y. (2009). Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans, Clin. Diagn. Virol., 45(3), 169-173. https://doi.org/10.1016/j.jcv.2009.06.006
  19. Shin, G.A., Linden, K.G., Arrowood, M.J., and Sobsey, M.D. (2001). Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts, Appl. Environ. Microbiol., 67(7), 3029-3032. https://doi.org/10.1128/AEM.67.7.3029-3032.2001
  20. Sinha, R.P. and Hader, D.P. (2002). UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 1(4), 225-236. https://doi.org/10.1039/b201230h
  21. Sjogren, J.C. and Sierka, R.A. (1994). Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis, Appl. Environ. Microbiol., 60(1), 344-347. https://doi.org/10.1128/AEM.60.1.344-347.1994
  22. Son, H., Cho, M., Chung, H., Choi, S., and Yoon, J. (2004). Bactericidal activity of mixed oxidants: Comparison with free chlorine, J. Ind. Eng. Chem., 10(5), 705-709.
  23. Son, H., Cho, M., Kim, J., Oh, B., Chung, H., and Yoon, J. (2005). Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine, Water Res., 39(4), 721-727. https://doi.org/10.1016/j.watres.2004.10.018
  24. Tosa, K. and Hirata, T. (1999). Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection, Water Res., 33(2), 361-366. https://doi.org/10.1016/S0043-1354(98)00226-7
  25. Travis, T.W. and Heath, A.G. (1981). Some physiological responses of rainbow trout (Salmo gairdneri) to intermittent monochloramine exposure, Water Res., 15(8), 977-982. https://doi.org/10.1016/0043-1354(81)90205-0
  26. Wang, W.L., Wu, Q.Y., Huang, N., Wang, T., and Hu, H.Y. (2016). Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species, Water Res., 98, 190-198. https://doi.org/10.1016/j.watres.2016.04.015
  27. Watts, M.J. and Linden, K.G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water, Water Res., 41(13), 2871-2878. https://doi.org/10.1016/j.watres.2007.03.032
  28. Zimmer, J.L. and Slawson, R.M. (2002). Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment, Appl. Environ. Microbiol., 68(7), 3293-3299. https://doi.org/10.1128/AEM.68.7.3293-3299.2002