DOI QR코드

DOI QR Code

Re-chlorination facility design to cope with virus intrusion in water distribution system

상수도 관망 내 바이러스 유입 대응을 위한 재염소 시설 설계

  • Kim, Beomjin (Department of Civil and Environmental Engineering, Hannam University) ;
  • Lee, Seungyub (Department of Civil and Environmental Engineering, Hannam University)
  • 김범진 (한남대학교 건설시스템공학과) ;
  • 이승엽 (한남대학교 건설시스템공학과)
  • Received : 2024.03.14
  • Accepted : 2024.04.09
  • Published : 2024.04.30

Abstract

Water distribution system (WDS) is exposed to various water quality incidents during its operation. This study utilized Quantitative Microbial Risk Assessment (QMRA) to analyze the risk associated with potential virus intrusion in WDSs. Additionally, the study determined the location and operation of rechlorination facilities to minimize potential risk. In addition, water quality resilience was calculated to confirm that the chlorine concentration maintains within the target range (0.1-1.0 mg/L) during normal operation. Hydraulic analysis was performed using EPANET, while EPANET-MSX was linked to simulate the reactions between viruses and chlorine. The proposed methodology was applied to the Bellingham network in the United States, where rechlorination facilities capable of injecting chlorine concentrations ranging from 0.5 mg/L to 1.0 mg/L were considered. Results indicated that without rechlorination facilities, the Average risk was 0.0154. However, installing rechlorination facilities and injecting chlorine at a concentration of 1.0 mg/L could reduce the Average risk to 39.1%. It was observed that excessive chlorine injection through rechlorination facilities reduced water quality resilience. Consequently, a rechlorination facility with a concentration of 0.5 mg/L was selected, resulting in a reduction of approximately 20% in average risk. This study provides insights for designing rechlorination facilities to enhance preparedness against potential virus ingress in the future.

상수도 관망은 운영 중 다양한 수질 사고 발생 위험요소에 노출되어 있다. 본 연구는 다양한 수질 사고 위험요소 중 상수도 관망 내로의 바이러스 유입에 따른 위험도 평가 방법론을 제시하고, 이를 활용하여 위험도를 최소화할 수 있는 재염소 시설의 위치와 운영에 대한 검토를 수행하였다. 위험도 평가를 위해 QMRA (Quantitative Microbial Risk assessment)를 적용하였으며, 염소 농도에 따른 Water Quality Resilience를 정의하여 바이러스가 유입되지 않은 정상 운영 상황과 바이러스가 유입된 비정상 상황에서 염소 농도가 목표 범위(0.1-1.0 mg/L)내 운영되는지 여부를 정량적으로 확인하였다. 본 연구에서는 바이러스와 염소간의 반응을 고려해야 하기에, 다양한 수질인자를 고려할 수 있는 EPANET-MSX를 활용하여 수리 및 수질 분석을 수행하였다. 제안한 방법론은 미국의 Bellingham의 관망에 적용하였으며, 재염소 시설의 경우 0.5 mg/L부터 1.0 mg/L까지 주입 가능한 것으로 하였다. 적용 결과 재염소 시설이 없는 경우 Average risk가 0.0154이었으며, 재염소 시설 설치 후 1.0 mg/L의 농도로 주입 시 39.1%의 Average risk를 저감할 수 있었다. 다만, 재염소 시설을 통한 과도한 염소 주입은 Water Quality Resilience를 저감하여, 최종적으로 0.5 mg/L의 재염소 시설을 선정하였으며, 이를 활용하여 20% 가량의 Average risk 저감이 가능함을 확인하였다. 본 연구는 향후 잠재적 바이러스 유입에 대비한 재염소 시설의 설계에 활용할 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2023학년도 한남대학교 학술연구비 지원에 의하여 연구되었음.

References

  1. Ahn, J.C., Park, C.M., and Koo, J.Y. (2005). "Modeling and application of chlorine bulk decay in drinking water distribution system." Journal of Korean Society of Water and Wastewater, Vol. 19, No. 4, pp. 487-496. 
  2. Bahk, G.J., Oh, D.H., Ha, S.D., Park, K.H., Joung, M.S., Chun, S.J., Park, J.S., Woo, G.J., and Hong, C.H. (2005). "Quantitative microbial risk assessment model for Staphylococcus aureus in Kimbab." Korean Journal of Food Science and Technology, Vol. 37, No. 3, pp. 484-491. 
  3. Boccelli, D.L., Tryby, M.E., Uber, J.G., and Summers, R.S. (2003). "A reactive species model for chlorine decay and THM formation under rechlorination conditions." Water Research, Vol. 37, No. 11, pp. 2654-2666.  https://doi.org/10.1016/S0043-1354(03)00067-8
  4. Brinkman, N.E., Fout, G.S., and Keely, S.P., (2017). "Retrospective surveillance of wastewater to examine seasonal dynamics of enterovirus infections." mSphere, Vol. 2, No. 3, e00099-17. doi: 10.1128/mSphere.00099-17. 
  5. Hamouda, M.A., Anderson W.B.D., Van Dyke, M.I., Douglas, I,P., McFadyen, S.D., and Huck, P.M. (2016). "Scenario-based quantitative microbial risk assessment to evaluate the robustness of a drinking water treatment plant." Water Quality Research Journal of Canada, Vol. 52, No. 2, pp. 81-96.  https://doi.org/10.2166/wqrjc.2016.034
  6. Jeong, C. (2008). Chlorine residual and DBPs control program development in the distribution system. Master's Thesis, Kookmin University, pp. 28-29. 
  7. Jeong, G., Kang, D., and Hwang, T. (2022). "Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks." Journal of Korea Water Resources Association, Vol. 55, No. S-1, pp. 1197-1210. 
  8. Kim, D.H., Lee, D.J., Kim, K.P., Bae, C.H., and Joo, H.E. (2010). "Computing the dosage and analysing the effect of optimal rechlorination for adequate residual chlorine in water distribution system." Journal of Korean Society of Environmental Engineers, Vol. 32, No. 10, pp. 916-927. 
  9. Kim, J.K., and Han, J.A. (2014). "Rechlorination for residual chlorine concentration equalization in distribution system." Journal of Korean Society of Water and Wastewater, Vol. 28, No. 1, pp. 91-101.  https://doi.org/10.11001/jksww.2014.28.1.91
  10. Kim, K., Hyung, J., Seo, H., Shin, H., and Koo, J. (2017). "Development of an optimal operation model of residual chlorine concentration in water supply system." Journal of Korean Society of Water and Wastewater, Vol. 31, No. 6, pp. 587-597.  https://doi.org/10.11001/jksww.2017.31.6.587
  11. Lansey, K., Pasha, F., Pool, S., Elshorbagy, W., and Uber, J. (2007). "Locating satellite booster disinfectant stations." Journal of Water Resources Planning and Management, Vol. 133, No. 4, pp. 372-376.  https://doi.org/10.1061/(ASCE)0733-9496(2007)133:4(372)
  12. Lee, M.Y., Park, S.J., Cho, E.J., Park, S.J., Han, S.H., and Kwon, O.S. (2013). "Health risk assessment of Cryptosporidium in tap water in Korea." Korean Society of Environmental Health, Vol. 39, No. 1, pp. 32-42.  https://doi.org/10.5668/JEHS.2013.39.1.32
  13. Lee, S., Wilson, A.M., Cooksey, E., Boccelli, D., and Verhougstraete, M.P. (2022). "Exploring vulnerable nodes, impactful viral intrusion sites, and viral infection risk reductions offered by chlorine boosters in municipal drinking water networks." Journal of Water Resources Planning and Management, Vol. 148, No. 9, pp. 1-9.  https://doi.org/10.1061/(ASCE)WR.1943-5452.0001589
  14. Michigan State University (MSU) (2011). United States of America, accessed 10 October 2023, . 
  15. Ministry of Environment (ME) (2010). Water distribution system stadards. 
  16. Moeini, M., Sela, L., Taha, A.F., and Abokifa, A.A. (2023). "Bayesian optimization of booster disinfection scheduling in water distribution networks." Water Research, Vol. 242, 120117. 
  17. Ostfeld, A., and Salomons, E. (2006). "Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems." Engineering Optimization, Vol. 38, No. 3, pp. 337-352.  https://doi.org/10.1080/03052150500478007
  18. Parks, S.L.I., and VanBriesen, J.M. (2009). "Booster disinfection for response t o cont aminat ion in a drinking wat er dist ribut ion system." Journal of Water Resources Planning and Management, Vol. 135, No. 6, pp. 502-511. 
  19. Poduska, R.A., and Hershey, D. (1972). "Model for virus inactivation by chlorination." Water Pollution Control Federation, Vol. 44, No. 5, pp. 738-745. 
  20. Prasad, T.D., Walters, G.A., and Savic, D.A. (2004). "Booster disinfection of water supply networks: Multiobjective approach." Journal of Water Resources Planning and Management, Vol. 130, No. 5, pp. 347-376.  https://doi.org/10.1061/(ASCE)0733-9496(2004)130:5(367)
  21. Shafiqul Islam, M., Sadiq, R., Rodriguez, M.J., Najjaran, H., and Hoorfar, M. (2014). "Reliability assessment for water supply systems under uncertainties." Journal of Water Resources Planning and Management, Vol. 140, No. 4, pp. 468-479. 
  22. Teunis, P.F.M., Xu, M., Fleming, K.K., Yang, J., Moe, C.L., and LeChevallier, M.W. (2010). "Enteric virus infection risk from intrusion of sewage into a drinking water distribution network." Environmental Science & Technology, Vol. 44, No. 22, pp. 8561-8566. 
  23. Thurston-Enriquez, J.A., Haas, C.N., Jacangelo, J., and Gerba, C.P. (2003). "Chlorine inactivation of adenovirus type 40 and feline calicivirus." Applied and Environmental Microbiology, Vol. 69, No. 7, pp. 3979-3985.  https://doi.org/10.1128/AEM.69.7.3979-3985.2003
  24. Vasconcelos, J.J., Rossman, L.A., Grayman, W.M., Boulos, P.F., and Clark, R.M. (1997). "Kinetics of chlorine decay." Journal- American Water Works Association, Vol. 89, No. 7, pp. 54-65.  https://doi.org/10.1002/j.1551-8833.1997.tb08259.x
  25. Yoon, J.H., Oh, J.W., and Choi, Y.S. (1998). "Optimal rechlorination for the regulation of chlorine residuals in water distribution systems." Journal of Korean Society of Water and Wastewater, Vol. 12, No. 2, pp. 90-98.