• Title/Summary/Keyword: Rational number

Search Result 400, Processing Time 0.02 seconds

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

순환소수 지도에서의 문제점과 해결방안 (Problems and Alternatives on Teaching for Repeating Decimal)

  • 이강섭;엄규연
    • 대한수학교육학회지:학교수학
    • /
    • 제9권1호
    • /
    • pp.1-12
    • /
    • 2007
  • 유리수의 개념에 대한 이해를 확립하고 실수로의 확장 가능성을 탐색하는 수학 8단계 학습에서 제시되는 '유리수와 순환소수와의 관계'에 대하여 교과서 별로 서로 다른 내용을 담고 있어 많은 학습자들이 혼란을 겪고 있다. 이 연구에서는 순환 소수에 대한 교육과정, 교과서, 평가문항을 분석하여 순환소수 지도에서의 문제점을 찾고 그에 따른 바람직한 해결방안을 모색하였다. 대안으로서, '0을 순환마디로 사용할 것'과 유한소수의 정의를 '0이 순환하는 소수'로 할 것을 제안하였다. 이를 바탕으로 '모든 유리수는 순환소수로 나타낼 수 있으며, 모든 순환소수는 유리수로 나타낼 수 있다'는 관계의 지도를 해결방안으로 삼았다.

  • PDF

Efficient Exponentiation in Extensions of Finite Fields without Fast Frobenius Mappings

  • Nogami, Yasuyuki;Kato, Hidehiro;Nekado, Kenta;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.818-825
    • /
    • 2008
  • This paper proposes an exponentiation method with Frobenius mappings. The main target is an exponentiation in an extension field. This idea can be applied for scalar multiplication of a rational point of an elliptic curve defined over an extension field. The proposed method is closely related to so-called interleaving exponentiation. Unlike interleaving exponentiation methods, it can carry out several exponentiations of the same base at once. This happens in some pairing-based applications. The efficiency of using Frobenius mappings for exponentiation in an extension field was well demonstrated by Avanzi and Mihailescu. Their exponentiation method efficiently decreases the number of multiplications by inversely using many Frobenius mappings. Compared to their method, although the number of multiplications needed for the proposed method increases about 20%, the number of Frobenius mappings becomes small. The proposed method is efficient for cases in which Frobenius mapping cannot be carried out quickly.

  • PDF

회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구 (Heat transfer characteristics between a rotating flat plate and an impinging water jet)

  • 전성택;이종수;최국광
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발 (Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models)

  • 이진덕;소재경
    • 한국지리정보학회지
    • /
    • 제12권1호
    • /
    • pp.106-118
    • /
    • 2009
  • 1m급 전후의 고해상도 위성영상들이 지구관측 및 모니터링으로부터 국토의 디지털 지도제작에 이르기까지 폭넓게 활용되고 있다. IKONOS 영상의 경우 Pro와 Precision 제품은 상당히 고가이므로 정확한 지도를 제작하는데 저가의 Geo제품과 영상공급자에 의해 제공된 RPC계수를 이용하는 것은 바람직하다. IKONOS 고해상도 영상은 엄밀한 센서모델 대신 RF에 의해 설명되어진다. 본 연구에서는 RF 모델을 기반으로 추출되는 지상좌표의 정확도를 개선하기 위하여 대상물공간과 상공간에서 각각 정의된 4개의 모델, 즉 선형이동 모델, 축척 및 선형이동 모델, Affine 모델, 2차 다항식 모델을 제시하였다. RF 모델을 기반으로 한 지상좌표 산출 알고리즘과 산출된 지상좌표의 정확도 개선 알고리즘을 개발하고 실험을 통하여 다항식 보정모델별 개선효과를 분석하였다. 또한 지상기준점의 수와 배치유형, 측량의 정확도와 같은 여러 가지 지도제작 매개변수들이 지상좌표의 정확도에 미치는 효과를 평가하였다. 적용실험 결과, RF 모델에 의해 1차적으로 산출된 3차원 지상좌표의 RMSE는 X 방향에서 8.035m, Y 방향에서 10.020m, Z 방향에서 13.318m이었으나 다항식 보정 알고리즘을 통하여 X 방향 2.791m, Y 방향 2.520m, Z 방향 1.441m까지 RMSE를 낮춤으로써 수평위치에서 약 65%, 수직방향에서 약 89%까지 정확도를 크게 개선할 수 있었다.

  • PDF

REMARKS ON CURVES OF MAXIMAL REGULARITY IN ℙ3

  • Lee, Wanseok
    • East Asian mathematical journal
    • /
    • 제36권3호
    • /
    • pp.349-357
    • /
    • 2020
  • For a nondegenerate projective curve C ⊂ ℙr of degree d, it was shown that the Castelnuovo-Mumford regularity reg(C) of C is at most d - r + 2. And the curves of maximal regularity which attain the maximally possible value d - r + 2 are completely classified. In this short note, we first collect several known results about curves of maximal regularity. We provide a new proof and some partial results. Finally we suggest some interesting questions.

구고호은문에 대한 고찰

  • 호문룡
    • 한국수학사학회지
    • /
    • 제15권1호
    • /
    • pp.43-56
    • /
    • 2002
  • Hong, Jung-Ha(1684-\ulcorner ) explained 78 problems which look for the length of right triangle satisfying the given conditions by the Pythagorean theorem or the ratio of similarity in the chapter ‘Goo-Go-Hoh-Eun-Moon’of the 5th volume of his book Goo-Ill-Jeep. Most questions are formulated by equations of degree 2, 3, 4 which mostly have rational number solutions and part of the equations are expressed by counting stick. The explanation of each question describes the procedure to make the equation in detail, but only presents the solution with a few steps to solve.

  • PDF

DISTRIBUTION OF VALUES OF FUNCTIONS OVER FINITE FIELDS

  • Chae, Hi-Joon
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.451-456
    • /
    • 2004
  • Given a function on a scheme over a finite field, we can count the number of rational points of the scheme having the same values. We show that if the function, viewed as a morphism to the affine line, is proper and its higher direct image sheaves are tamely ramified at the infinity then the values are uniformly distributed up to some degree.

ALGEBRAIC POINTS ON THE PROJECTIVE LINE

  • Ih, Su-Ion
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1635-1646
    • /
    • 2008
  • Schanuel's formula describes the distribution of rational points on projective space. In this paper we will extend it to algebraic points of bounded degree in the case of ${\mathbb{P}}^1$. The estimate formula will also give an explicit error term which is quite small relative to the leading term. It will also lead to a quasi-asymptotic formula for the number of points of bounded degree on ${\mathbb{P}}^1$ according as the height bound goes to $\infty$.