• Title/Summary/Keyword: Rate of strength increase

Search Result 866, Processing Time 0.023 seconds

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF

Form grinding characteristics of Sr ferrite (Sr 페라이트의 총형연삭특성)

  • 김성청;이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions in form grinding of Sr-ferrite with the electro-plated diamond wheel. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the best at the peripheral wheel speed of 1700 m/min. (2) In the case of the depth of cut larger than 0.4mm, crack layers is induced in the ground surface, and the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) Whe the depth of cut exceeds 0.6mm, the wheel life becomes extremely severe due to the large chipping and brack- age in the diamond grains. However, at the depth of cut .leq. 0.05mm, the diamond grain shows abrasive wear. (4) The decrease of flexural strength and the increase of surface roughness is in proportion to the increase of the feed rate. (5) Most effective nozzle setting angles with various delivery conditions of the grinding fluid, such as nozzle position .PHI. , flow rate Q, etc., were made clear.

  • PDF

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann;Jiseok Kim;Woongik Hwang
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G.;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.369-372
    • /
    • 2002
  • The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF

Setting Characteristics of Cement Mortar with Super Retarding Agent Mixing Rate in High Temperature (고온조건에서의 초지연제 혼입율 변화에 따른 모르타르의 응결 특성)

  • Lim, Gun Su;Han, Soo Hwan;Jeong, Yeong Jin;Hyun, Seung Yong;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.131-132
    • /
    • 2021
  • In this study, as part of the study to reduce and integrate heat of hydration of concrete, the performance change of super retarding agent is examined in the mortar area under high temperature conditions. It was confirmed that the setting time delay can be adjusted from several hours to several days depending on the high temperature and the change of super retarding agent mixing rate. With the increase of super retarding agents, the early age strength was delayed while at 28 days the use of super retarding agent results in an increase of strength remakably.

  • PDF

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 내화특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2019
  • In this study, the fire resistance performance of polymer cement mortars which are used as a representative repair material for section restoration, is evaluated and residual bond strength is measured by considering unity with concrete. According to the evaluation of fire resistance performance of re-emulsification type polymer cement mortars, residual compressive strength was drastically decreased according to heating temperatures with an increase of polymer addition rate, and this seems to be attributable to the application of polymer film. In addition, an explosion phenomenon occurred frequently with an increase of addition rate, so this should be considered when selecting repair materials and processing.

Basic Characteristics of High Performance Concrete Mixing Organic Fiber (유기섬유 복합 혼입 고성능 콘크리트의 기초적 특성)

  • Park, Byung-Kwan;You, Ji-Young;Lee, Joung-Ah;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.87-91
    • /
    • 2008
  • The study examined fire resistance of concrete followed by change of mixed rate in PP and NY composite fiber and the results were as follows. In the event of fluidity in concrete not set, plane satisfied 600±100, its target slump flow, and fluidity was reduced as organic fiber's mixed rate was increased. Air amount satisfied 3.0±1.0, its target air amount, and didn't have distinct differences in reduction and increase according to organic fiber's kind and change of its mixed rate. However, it had a tendency that fluidity was reduced as the mixed rate was increased. In characteristics of hardening concrete, the 28th day compressive strength followed by organic fiber's kind and change of its mixed rate didn't have a lot of differences and satisfied high strength scope as about 70MPa. In spalling characteristics after fire resistance test, spalling was happened in non-mixture, plane combination, and P1N0. In other combinations, spalling resistance was happened. The relic compressive strength rate was 56%, the best condition, in P3N1(PP0.03%, NY0.01% compositeness) mixing PP fiber with NY fiber at once.

  • PDF

A Comparison of the Properties of DC and RF Sputter - deposited Cr films (DC 및 RF 스퍼터링법으로 증착한 Cr 박막의 특성 비교)

  • Park, Min-Woo;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.461-465
    • /
    • 2006
  • Chromium (Cr) films were deposited on plain carbon steel sheets by DC and RF magnetron sputtering as well as by electroplating. Effects of DC or RF sputtering power on the deposition rate and properties such as, hardness, surface roughness and corrosion-resistance of the Cr films were investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microcopy (SEM) analyses were performed to investigate the crystal structure, surface roughness, thickness of the Cr films. Salt fog tests were used to evaluate the corrosion resistance of the samples. The deposition rate, hardness, and surface roughness of the Cr film deposited by either DC or RF sputtering increase with the increase of sputtering power but the adhesion strength is nearly independent of the sputtering power. The deposition rate, hardness, and adhesion strength of the Cr film deposited by DC sputtering are higher than those of the Cr film deposited by RF sputtering, but RF sputtering offers smoother surface and higher corrosion-resistance. The sputter-deposited Cr film is harder and has a smoother surface than the electroplated one. The sputter-deposited Cr film also has higher corrosion-resistance than the electroplated one, which may be attributed to the smoother surface of the sputter-deposited film.