Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G. (Materials Science Centre IIT) ;
  • Das, C.K. (Materials Science Centre IIT) ;
  • Panda, A.B. (Department of Chemistry IIT) ;
  • Pramanik, P. (Department of Chemistry IIT)
  • Published : 2002.12.01

Abstract

The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

Keywords

References

  1. J. Polym. Sci., Polym. chem. Ed. v.31 K. Yano;S. Usuki;A. Okada;T. Kurauchi;O. Kamigaito
  2. Chem. Mater. v.5 R. A. Vaia;H. Ishii;E. P. Giannelis https://doi.org/10.1021/cm00036a004
  3. J. Polym. Chem. Ed. v.33 P. B. Messersmith;E. P. Giannelis https://doi.org/10.1002/pola.1995.080330707
  4. Adv. Mater v.8 E. P. Giannelis https://doi.org/10.1002/adma.19960080104
  5. J. Appl. Polym. Sci. v.78 Y. Wang;L. Zhang;C. Tang;D. Yu https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  6. Acta Polym. Sin. v.2 Z. D. Zhao;Z. N. Qi;F. S. Wang
  7. J. Appl. Polym. Sci. v.71 Y. Ke; C. Long;Z. Qi https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E
  8. Bull. Mater. Sci. v.20 no.2 N. N. Ghosh;P. Pramanik https://doi.org/10.1007/BF02744895
  9. J. Non-Cryst. Solids v.38&39 T. Furukawa;W. B. White
  10. J. Non-Cryst. Solids v.63 D. M. Krol;J. G. van Lierop https://doi.org/10.1016/0022-3093(84)90392-2
  11. Kauts. Gummi Kunsts v.19 H. Westlinning;S. Wolff
  12. Ind. Eng. Chem. v.45 H. E. Adams;B. L. Johnson https://doi.org/10.1021/ie50523a048
  13. Rubber Chem. Technol. v.32 M. L. Studebaker;L. G. Nabors https://doi.org/10.5254/1.3542485
  14. Vulcanization of Elastomers G. Alleiger;I. J. Sjothun
  15. J. Appl. Polym. Sci. v.1 L. Bateman;R. W. Glazebrook;C. G. Moore https://doi.org/10.1002/app.1959.070010301
  16. Gummi Asbest v.8 H. Krebs
  17. Rubber Chem. Technol. v.34 W. Scheele https://doi.org/10.5254/1.3540285
  18. J. Polym. Sci. v.15 C. K. Das;S. Banerjee
  19. Rubber Chem. Technol. v.31 G. W. Ross https://doi.org/10.5254/1.3542360
  20. Polym. Comm. v.27 C. K. Das
  21. Kauts. Gummi Kunst v.36 no.12 C. K. Das
  22. J. Polym. Sci. v.19 C. K. Das