• Title/Summary/Keyword: Rate acceleration

Search Result 695, Processing Time 0.027 seconds

Convergence analysis of fixed-point iteration with Anderson Acceleration on a simplified neutronics/thermal-hydraulics system

  • Lee, Jaejin;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.532-545
    • /
    • 2022
  • In-depth convergence analyses for neutronics/thermal-hydraulics (T/H) coupled calculations are performed to investigate the performance of nonlinear methods based on the Fixed-Point Iteration (FPI). A simplified neutronics-T/H coupled system consisting of a single fuel pin is derived to provide a testbed. The xenon equilibrium model is considered to investigate its impact during the nonlinear iteration. A problem set is organized to have a thousand different fuel temperature coefficients (FTC) and moderator temperature coefficients (MTC). The problem set is solved by the Jacobi and Gauss-Seidel (G-S) type FPI. The relaxation scheme and the Anderson acceleration are applied to improve the convergence rate of FPI. The performances of solution schemes are evaluated by comparing the number of iterations and the error reduction behavior. From those numerical investigations, it is demonstrated that the number of FPIs is increased as the feedback is stronger regardless of its sign. In addition, the Jacobi type FPIs generally shows a slower convergence rate than the G-S type FPI. It also turns out that the xenon equilibrium model can cause numerical instability for certain conditions. Lastly, it is figured out that the Anderson acceleration can effectively improve the convergence behaviors of FPI, compared to the conventional relaxation scheme.

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

An Application of Sampling to Determine a Proper Rate of Probe Vehicles for Macroscopic Traffic Flow Monitoring Indices (거시교통류 모니터링 지표산출을 위한 적정 프로브차량 비율 결정에 관한 연구)

  • Shim, Jung-Suk;Heo, Hyun-Moo;Eom, Ki-Jong;Lee, Chung-Won;Ahn, Su-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this paper, we consider three macroscopic traffic flow monitoring indices, Travel Time Index(TTI), Acceleration Noise(AN) and Two Fluid(TF) and investigate how to determine a proper rate of probe cars for producing reliable values of these indices. For the analysis, we use classical sampling theories and provide numbers of probe rates using simulation data.

Using Lateral Acceleration and Yaw Rate, Sliding Observer Design for Roll Angle (횡방향 가속도 및 요 속도를 이용한 차량의 롤 각 추정기 설계)

  • Lee, Jong-Kuk;Kwon, Young-Shin;Lee, Hyeong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.38-46
    • /
    • 2011
  • This paper presents roll angle estimator which used Kalman filter. Recently, the uses of the ELSD (Electronic Limited Slip Differential) and TVD(Torque Vectoring Differential) for vehicle yaw control are studied in many researches. However the roll angle can be negative effect of ELSD and TVD control. Therefore the information of roll angle can be used for vehicle yaw control. Moreover it can be used for rollover prevent control. Recently, most of the vehicles use lateral acceleration and yaw rate sensor. In this paper, design of Kalman filter which used lateral acceleration and yaw rate information is developed. In this paper, in order to verify the estimator ability, the CarSim and Matlab/Simulink are used.

The Effects of the Mounted Method of Frame of a Large Truck on Handling Performance (대형트럭 프레임의 결합방법이 조종성능에 미치는 영향)

  • 문일동;오재윤;오석형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.112-119
    • /
    • 2004
  • This paper develops a computer model of a cabover type large truck for estimating the effects of the mounted method of frame on handling performance. The computer model considers two mounted methods of frame; flange mounted and web mounted. Frame is modeled by finite elements using MSC/NASTRAN in order to consider the flexibility of frame. The reliability of the developed computer model is verified by comparing the actual vehicle test results with the simulation results. The actual vehicle test is performed in a double lane change course, and lateral acceleration, yaw rate, and roll angle are measured. To estimate the effects of the mounted method of frame on handling performance, simulations are performed with the flange mounted and web mounted frame. Simulation results show that the web mounted frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounted frame's variations, especially in the high test velocity and the second part of the double lane course. Also, simulation results show that the web mounted frame's tendencies of roll angle, lateral acceleration, and yaw rate advance the flange mounted frame's tendencies, especially in the high test velocity and the second part of the double lane course.

Design of Zigbee based Portable ECG monitoring system (지그비 기반의 휴대형 심전도 모니터링 시스템 설계)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.51-53
    • /
    • 2006
  • This paper proposes a portable ECG monitoring system, which integrates uptodate PDA and RF communication technology. The aim of the study is to acquire the subject's biomedical signal without any constraint. It has two types of transmission mode, which are total signal transmission mode and HR(heart rate)/SC(step count) transmission mode. In audition, wireless communication technology uses Zigbee Wireless PAN and can work in low-power mode, which is one of the advantages of ZiBbee communication technology. The developed system is composed of a transmitter and a receiver. The transmitter has three-axial acceleration sensor. ECG amplifier and Zigbee communication controller. In total signal transmission mode, it can send data 50 packets per second whose transmission speed corresponds to 300 ECG samples and 60 acceleration samples. In HR/SG transmission mode, it can calculate heart rate from EEG data with 216 samples per second and step count from acceleration data and send a packet every cardiac cycle. The receiver forwards the received data to PDA, where the data can be stored and displayed. Therefore, the developed device enables to continuous monitoring for Activities of Daily Living(ADL). Also, this method will reduce medical costs in the aged society.

  • PDF

A Basic Study on Road Safety Assessment through an Analysis of Drivers' Driving Characteristics (운전자 주행특성 분석을 통한 도로 안전성 평가에 관한 기초연구)

  • Lim, Joon-Bum;Lee, Soo-Beom;Park, Jun-Tae;Park, Jin-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.136-140
    • /
    • 2011
  • In this study, to investigate the dangerous driving on the curves, a driving test was performed in 10 km from Jinan and to Jeonju(Bugui Gas Station~Whasim Intersection), on the national highway No. 26. For the dangerous driving felt by the driver when a driver is driving on the curves, lateral acceleration and yaw rate were analyzed. And then, the reference value of lateral acceleration and yaw rate was computed. Through observing the driving speed and the characteristics of ordinary drivers using the applicable roads or following them as they drive, the driving test was performed again and the section exceeding the reference value set as above was computed. On the dangerous driving area, exceeding the reference value, total 10 accidents took place from 2006 till 2010, and slipping caused by speeding accounted for more than 70% of the accidents. It was concluded that the result of an analysis through recording drivers' driving characteristics, was reliable.

Movement Responses of Sludge Worm Tubifex tubifex (Annelida, Oligochaeta) in Three Different Copper Concentrations

  • Hyejin Kang;Mi-Jung Bae;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2022
  • Monitoring and assessing aquatic ecosystems using the behavior of organisms is essential for sustainable ecosystem management. Oligochaetes, which inhabit various freshwater ecosystems, are frequently used to evaluate the environmental conditions of freshwater ecosystems. Tubifex tubifex (Müller, 1774) (Oligochaeta, Tubificidae) is tolerant to organic pollution and has been used to evaluate the toxicity of toxicants, including heavy metals. We studied the behavioral responses of T. tubifex to three different copper concentrations (0.1, 0.5, and 1.0 mg L-1). The specimens were exposed to copper in an observation cage containing 150 mL of dechlorinated water. Movement behavior (diameter, speed, acceleration, meander, and turning rate) was continuously observed for two hours before and after the copper treatments. After the treatments, the diameter shrank and showed rapid twisting movement under all the copper conditions. The turning rate had a positive correlation with meander and acceleration both before and after treatment at all three concentrations, whereas speed and meander had a negative correlation. Length and turning rate also showed a negative correlation. The correlation coefficient between speed and acceleration in the highest copper concentration changed from positive before treatment (r=0.64) to negative (r= -0.52) after treatment. Our results present the possibility of using behavioral parameters to detect copper contamination in freshwater ecosystems.

A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations (Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화)

  • 최영휴;홍진현;최응영;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations (볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화)

  • Choi, Young-Hyu;Hong, Jin-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF