This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.
Updating a forest type map is essential for sustainable forest resource management and monitoring to cope with climate change and various environmental problems. According to the necessity of efficient and wide-area forestry remote sensing, CAS500-4 (Compact Advanced Satellite 500-4; The agriculture and forestry satellite) project has been confirmed and scheduled for launch in 2023. Before launching and utilizing CAS500-4, this study aimed to pre-evaluation the possibility of satellite-based tree species classification using RapidEye, which has similar specifications to the CAS500-4. In this study, the study area was the Chuncheon forest management complex, Gangwon-do. The spectral information was extracted from the growing season image. And the GLCM texture information was derived from the growing and non-growing seasons NIR bands. Both information were used to classification with random forest machine learning method. In this study, tree species were classified into nine classes to the coniferous tree (Korean red pine, Korean pine, Japanese larch), broad-leaved trees (Mongolian oak, Oriental cork oak, East Asian white birch, Korean Castanea, and other broad-leaved trees), and mixed forest. Finally, the classification accuracy was calculated by comparing the forest type map and classification results. As a result, the accuracy was 39.41% when only spectral information was used and 69.29% when both spectral information and texture information was used. For future study, the applicability of the CAS500-4 will be improved by substituting additional variables that more effectively reflect vegetation's ecological characteristics.
In spatio-temporal fusion aiming at predicting images with both high spatial and temporal resolutionsfrom multi-sensor images, the radiometric inconsistency between input multi-sensor images may affect prediction performance. This study investigates the effect of radiometric correction, which compensate different spectral responses of multi-sensor satellite images, on the spatio-temporal fusion results. The effect of relative radiometric correction of input images was quantitatively analyzed through the case studies using Sentinel-2, PlanetScope, and RapidEye images obtained from two croplands. Prediction performance was improved when radiometrically corrected multi-sensor images were used asinput. In particular, the improvement in prediction performance wassubstantial when the correlation between input images was relatively low. Prediction performance could be improved by transforming multi-sensor images with different spectral responses into images with similar spectral responses and high correlation. These results indicate that radiometric correction is required to improve prediction performance in spatio-temporal fusion of multi-sensor satellite images with low correlation.
The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.
Journal of The Korean Society of Agricultural Engineers
/
v.56
no.3
/
pp.55-64
/
2014
While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.441-441
/
2012
본 연구의 목적은 북한지역에 적용할 수 있는 논벼 재배지역 추출 기법을 개발 및 적용하여 논 분포도를 작성하고, 정확도를 평가하는 것이다. 이를 위하여 북한에 적용 가능한 시계열 위성자료를 수집하고, 논벼 재배지역 추출을 위한 토지피복 분류 기법을 개발하여 북한의 논벼 재배지역 분포도를 작성하고자 한다. 최종적으로 작성된 논 분포도를 북한의 농경지 모니터링을 위한 기초 자료로 제공토록 한다. 본 연구에서는 시계열 NDVI를 적용한 객체기반 무감독 토지피복 분류 방법을 활용하여 북한의 황해남도 재령군을 대상으로 토지피복 분류와 논 지역을 추출을 수행하고자 하였다. 본 연구에서 활용한 영상은 RapieEye로서 5개의 위성이 지구를 관측하고 있기 때문에 매일 동일한 지역의 영상을 폭넓게 획득할 수 있다는 장점이 있으며, Red, Green, Blue, Near Infra Red 밴드 외에 Red Edge 밴드에서 데이터를 획득하여 산림 모니터링, 농작물 모니터링 등에 효과적으로 활용할 수 있다는 특징이 있다. 먼저 2010년 4월, 6월, 9월 영상으로 각 영상의 NDVI를 산정하고 이를 활용하여 객체를 생성하였다. 다음으로 생성된 객체를 바탕으로 무감독 토지피복 분류를 수행하였고, 논 적합지역에 대한 지형 정보를 분류결과에 반영하여 최종적인 토지피복지도 및 논 지역 지도를 구축하였다. 본 연구결과는 원격탐사분야의 응용 기술을 확장하고, 향후 북한지역의 농산물 생산량 파악과 농업수자원 평가 분야에서도 폭 넓게 활용될 것으로 판단된다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.5
/
pp.443-450
/
2014
To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.2
/
pp.51-58
/
2018
Recently, various satellite sensors have been developed and it is becoming more convenient to acquire multitemporal satellite images. Therefore, various researches are being actively carried out in the field of utilizing change detection techniques such as disaster and land monitoring using multitemporal satellite images. In particular, researches related to the development of unsupervised change detection techniques capable of extracting rapidly change regions have been conducted. However, there is a disadvantage that false detection occurs due to a spectral difference such as a seasonal change. In order to overcome the disadvantages, this study aimed to reduce the false alarm detection due to seasonal effects using the direction vector generated by applying the $S^2CVA$ (Sequential Spectral Change Vector Analysis) technique, which is one of the unsupervised change detection methods. $S^2CVA$ technique was applied to RapidEye images of the same and different seasons. We analyzed whether the change direction vector of $S^2CVA$ can remove false positives due to seasonal effects. For the quantitative evaluation, the ROC (Receiver Operating Characteristic) curve and the AUC (Area Under Curve) value were calculated for the change detection results and it was confirmed that the change detection performance was improved compared with the change detection method using only the change magnitude vector.
Kim, Yong-Min;Lee, Soo-Bong;Kim, Jong-Pil;Kim, Jin-Young
Proceedings of the Korean Society of Disaster Information Conference
/
2016.11a
/
pp.364-365
/
2016
본 연구에서는 고해상도 위성영상을 이용하여 지난 8월 29일 북한 함경북도 지역에서 발생한 홍수에 의한 피해를 분석하였다. 북한은 접근이 불가능한 지리적 특성을 가지기 때문에 인공위성을 활용한 모니터링이 유일한 관측 수단이라고 할 수 있다. 북한측 발표내용에 의하면 이번 홍수로 인해 사망 130여명, 실종 400여명, 시설물 8,670동 등 대규모 피해가 발생하였으며, 이재민은 7만명이 넘는 것으로 나타났다. 위성영상을 이용하여 모든 피해지역을 파악하는 것은 한계가 있지만, 일부 지역의 피해분석을 통해 피해규모를 간접적으로 확인하는 것은 가능하다. 본 연구에서는 5m급 고해상도 위성영상인 플래닛스코프(PlanetScope), 래피드아이(RapidEye) 영상을 이용하여 회령, 송학, 남양, 종성 4개 지역의 홍수피해 전, 직후, 한 달 후의 변화를 분석하였다. 분석결과, 해당지역은 시설물 및 농경지 침수, 제방붕괴 등이 발생하였으며, 홍수로 인한 지형변화가 동반되었음이 확인되었다.
The physical environment of urban areas covered mostly by concrete and asphalt is the main cause of the urban heat island effect, primarily becoming apparent through increased land surface temperature. This study examined the effect of different urban land cover types on the land surface temperature using MODIS, Landsat ETM+ and RapidEye satellite data. As a result, the remote sensing based land surface temperature showed a marked difference according to the land use pattern in the case study of Ilsan new city. The high-rise apartment residential districts with less building-to-land ratio and higher green area ratio revealed lower land surface temperature than the low-story single-family housing districts characterized by relatively high building-to-land ratio and low green area ratio. From the view of climate zone and land cover types, there is a strong linear correlation between the impervious land cover ratio and the land surface temperature; the land surface temperature increases as the impervious built-up areas expand. In contrast, vegetation;water and shadow areas affect the decrease of land surface temperature. There is also a negative (-) correlation between NDVI and land surface temperature but the seasonal variation of NDVI can be hardly corrected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.