DOI QR코드

DOI QR Code

Effect of the Urban Land Cover Types on the Surface Temperature: Case Study of Ilsan New City

도시지역의 토지피복유형이 지표면온도에 미치는 영향: 경기도 일산 신도시를 중심으로

  • Kim, Hyun-Ok (Korea Aerospace Research Institute, Satellite Information Research Center) ;
  • Yeom, Jong-Min (Korea Aerospace Research Institute, Satellite Information Research Center)
  • 김현옥 (한국항공우주연구원 위성정보연구센터) ;
  • 염종민 (한국항공우주연구원 위성정보연구센터)
  • Received : 2012.02.27
  • Accepted : 2012.04.01
  • Published : 2012.04.30

Abstract

The physical environment of urban areas covered mostly by concrete and asphalt is the main cause of the urban heat island effect, primarily becoming apparent through increased land surface temperature. This study examined the effect of different urban land cover types on the land surface temperature using MODIS, Landsat ETM+ and RapidEye satellite data. As a result, the remote sensing based land surface temperature showed a marked difference according to the land use pattern in the case study of Ilsan new city. The high-rise apartment residential districts with less building-to-land ratio and higher green area ratio revealed lower land surface temperature than the low-story single-family housing districts characterized by relatively high building-to-land ratio and low green area ratio. From the view of climate zone and land cover types, there is a strong linear correlation between the impervious land cover ratio and the land surface temperature; the land surface temperature increases as the impervious built-up areas expand. In contrast, vegetation;water and shadow areas affect the decrease of land surface temperature. There is also a negative (-) correlation between NDVI and land surface temperature but the seasonal variation of NDVI can be hardly corrected.

콘크리트와 아스팔트가 상당 부분을 차지하는 도시의 물리적인 환경은 도시열섬효과를 일으키는 주요 원인이며, 일차적으로 토지이용 또는 토양피복에 따른 지표면온도의 상승으로 나타난다. 본 연구에서는 도시의 토지피복유형이 지표면온도에 미치는 영향을 공간해상도가 다른 MODIS, Landsat ETM+과 RapidEye 위성영상을 사용하여 비교 분석해 보았다. 연구대상지인 일산 신도시지역의 지표면온도는 토지 이용에 따라 뚜렷이 구분되는 패턴을 보여주었는데 건폐율이 높은 저층단독주택지구보다 건폐율이 낮고 녹지율이 높은 고층 아파트단지의 지표면온도가 현저히 낮게 나타났다. 토지피복유형과의 관계는 건물이나 도로 등 도시화지역의 면적이 증가할수록 기후존의 지표면온도가 증가하고, 식생과 수면, 그림자 지역의 면적이 늘어날수록 지표면온도는 떨어진다. NDVI와 지표면온도 사이에도 음의 선형상관관계가 나타나지만, 계절적 영향을 배제하기 어렵다는 단점이 있다.

Keywords

References

  1. 박민호, 2001. Landsat TM 열적외 데이터를 이용한 도시열섬현상에 관한 연구 - 서울시를 대상으로, 대한토목학회논문집, 21(6-D): 861-874.
  2. 박성영, 1997. 신도시 개발 사례(II): 호수와 푸르름이 어우러져 정감이 서린 일산 신도시, 대한토목학회지, 45(5): 90-100.
  3. 이광재, 조명희, 2006. 공간정보기술을 활용한 도시지역 지표온도 분포 특성 해석, 대한원격탐사학회지, 20(6): 397-408. https://doi.org/10.7780/kjrs.2004.20.6.397
  4. 조현길, 野島義照, 2000. 도시녹지의 미기후개선, CO2 흡수 및 화재방지의 효과, 한국자원식물학회지, 13(3): 162-170.
  5. Gallo, K.P., A.L. McNab, T.R. Karl, J.F. Brown, J.J. Hood, and J.D. Tarpley, 1993. The use of NOAA AVHRR data for assessment of the urban heat island effect, Journal of Applied Meteorology, 32(5): 899-908. https://doi.org/10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2
  6. Gallo, K.P. and T.W. Owen, 1999. Satellite based adjustment for the urban heat island temperature bias, Journal of Applied Meteorology, 38: 806-813. https://doi.org/10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2
  7. Hansen, P.M. and J.K. Schjoerring, 2003. Reflectance measurement of canopy using normalized difference vegetation indices and partial least squares regression, Remote Sensing of Environment, 86: 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7
  8. Liang, S., H. Fang, J.T. Morisette, M. Chen, C.J. Shuey, C.L. Walthall, and C.S.T. Daughtry, 2002. Atmospheric Correction of Landsat ETM+ Land Surface Imagery-Part II: Validation and Applications, IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2736-2746. https://doi.org/10.1109/TGRS.2002.807579
  9. Lo, C.P., D.A. Quattrochi, and J.C. Luvall, 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect, International Journal of Remote Sensing, 18: 287-304. https://doi.org/10.1080/014311697219079
  10. Owen, T.W., T.N. Carlson, and R.R. Gillies, 1998. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization, International Journal of Remote Sensing, 19: 1663-1681. https://doi.org/10.1080/014311698215171
  11. Qin, Z., A. Karnieli, and P. Berliner, 2001. A monoalgorithm for retrieving land surface temperature from Landsat TM data and its application, International Journal of Remote Sensing, 22(18): 583-594.
  12. Sobrino, J.A., J.C. Jimenez-Munoz, and P. Leonardo, 2004. Land surface temperature retrieval from Landsat TM5, Remote Sensing of Environment, 90: 434-440. https://doi.org/10.1016/j.rse.2004.02.003
  13. Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcrette, 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview, IEEE Transactions on Geoscience and Remote Sensing, 35: 675-686. https://doi.org/10.1109/36.581987
  14. Voogt, J.A. and T.R. Oke, 2003. Thermal remote sensing of urban areas, Remote Sensing of Environment, 86: 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  15. Weng, Q., D. Lu, and J. Schubring, 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sensing of Environment, 89: 467-483. https://doi.org/10.1016/j.rse.2003.11.005
  16. Yuan, F. and M.E. Bauer, 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery, Remote Sensing of Environment, 106: 375-386. https://doi.org/10.1016/j.rse.2006.09.003
  17. Zhang, J., Y. Wang, and Y. Li, 2006. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band 6, Computer and Geosciences, 32: 1796-1805. https://doi.org/10.1016/j.cageo.2006.05.001

Cited by

  1. Selection of Green Roof Initiative Zone for Improving Adaptation Capability against Urban Heat Island vol.17, pp.1, 2014, https://doi.org/10.13087/kosert.2014.17.1.135
  2. Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model vol.22, pp.4, 2014, https://doi.org/10.7319/kogsis.2014.22.4.053
  3. Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.13
  4. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.1
  5. Analysis of Urban Heat Island Effect Using Time Series of Landsat Images and Annual Temperature Cycle Model vol.23, pp.1, 2015, https://doi.org/10.7319/kogsis.2015.23.1.113
  6. Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.5
  7. 비오톱 지도와 항공라이다 자료를 이용한 바람통로 분석 및 기후평가 vol.40, pp.6, 2012, https://doi.org/10.9715/kila.2012.40.6.148
  8. 위성영상을 통한 서울시 지표온도 분석 vol.22, pp.1, 2012, https://doi.org/10.14249/eia.2013.22.1.019
  9. 도농복합도시 온도상승 영향요인 분석 - 경남 밀야시를 대상으로 - vol.27, pp.6, 2013, https://doi.org/10.13047/kjee.2013.27.6.757
  10. LANDSAT 영상을 이용한 세종특별자치시의 도시화와 열섬현상 분석 vol.34, pp.3, 2012, https://doi.org/10.12652/ksce.2014.34.3.1033
  11. 도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향 vol.24, pp.3, 2012, https://doi.org/10.14191/atmos.2014.24.3.331
  12. Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT) vol.33, pp.1, 2017, https://doi.org/10.7780/kjrs.2017.33.1.8
  13. Analysis of Urban Heat Island Intensity Among Administrative Districts Using GIS and MODIS Imagery vol.20, pp.2, 2017, https://doi.org/10.11108/kagis.2017.20.2.001
  14. An Effect of Building-Coverage Ratio and Floor-Area Ratio on Urban Heat Island Effect : Focused on Multi-Family Housing and Apartments with Automatic Weather Station in Seoul vol.52, pp.7, 2012, https://doi.org/10.17208/jkpa.2017.12.52.7.159
  15. Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul vol.53, pp.7, 2012, https://doi.org/10.17208/jkpa.2018.12.53.7.109
  16. Landsat-8 시계열 위성영상을 활용한 도심지 확장에 따른 열섬포텐셜 분석 vol.36, pp.4, 2018, https://doi.org/10.7848/ksgpc.2018.36.4.305
  17. 식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - vol.29, pp.2, 2012, https://doi.org/10.14191/atmos.2019.29.2.131
  18. WRF-UCM을 이용한 연안산업도시지역 고해상도 기상 모델링 vol.29, pp.1, 2012, https://doi.org/10.5322/jesi.2020.29.1.45
  19. 소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 - vol.26, pp.2, 2012, https://doi.org/10.7464/ksct.2020.26.2.151
  20. A Cost-benefit Analysis for Urban Heat Island Mitigation Policy : Focused on the Installation of Green and Cool Roofs in Seoul, Korea vol.55, pp.5, 2012, https://doi.org/10.17208/jkpa.2020.10.55.5.97
  21. MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구 vol.36, pp.5, 2012, https://doi.org/10.7780/kjrs.2020.36.5.4.2
  22. 핫스팟 분석을 이용한 도시열섬 취약지 특성 분석 - 전주시를 대상으로 - vol.48, pp.5, 2012, https://doi.org/10.9715/kila.2020.48.5.067
  23. 원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구 vol.36, pp.6, 2012, https://doi.org/10.7780/kjrs.2020.36.6.1.11