• Title/Summary/Keyword: Rapid development system

Search Result 1,986, Processing Time 0.03 seconds

Development of a Real-Time Control System for Rapid Prototyping (Rapid Prototyping을 위한 실시간 제어시스템 개발에 관한 연구)

  • Kang, Moon-Ho;Jeong, Kyung-Min;Park, Yoon-Chang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.927-929
    • /
    • 1999
  • In this research a real-time control system was developed without program codings during control system designing procedures. On the Simulink window control system is designed in the form of block diagrams, program codes are produced automatically with the real time workshop package, then C-compiler compiles the program codes. With this automatic real-time program producing mechanism rapid prototyping is realized. To show effectiveness of the proposed system designing scheme a DSP-based DC motor speed control system was constructed and PI and Fuzzy control methods were implemented.

  • PDF

Development of an Expert System for Rapid Prototyping Machine Selection (쾌속조형장비 선정을 위한 전문가시스템 개발)

  • 정일용;이일랑;최병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.632-635
    • /
    • 2002
  • There are more than five dozen different RP(rapid prototyping) systems in the world and they are fairly expensive. All those systems have different capabilities and requirements in that each of them gives different tolerance, application field and part strength, etc. This situation may cause a problem of selecting an appropriate RP system. This paper presents an expert system, utilizing an algorithm that is composed up of rules to derive recommendations and answers to queries of the RP users. The expert system incorporates RP machines commercially available and adopts multi-selection criteria, namely, machine price, accuracy, build size, adopted process, etc. In the expert system, forward reasoning method is adopted and external spreadsheet for sub-data of the RP systems is used. The rules and knowledge are obtained from interviews and discussions with RP vendors and users, appropriate research publications and other reference materials.

  • PDF

Development of Rapid Cooling System for Injection Mold (사출금형의 급속냉각시스템 개발)

  • Moon, Young-Bae;Choi, Youn-Sik;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.111-114
    • /
    • 2008
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF

Development of New Rapid Prototyping System Performing both Deposition and Machining (II) (적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 -)

  • Heo, Jeong-Hun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

Tele-Control of Rapid Prototyping Machine System Via Internet (인터넷 기반의 원격 제어를 이용한 RP 시스템 개발)

  • 최태림;송용억;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.24-27
    • /
    • 2001
  • Nowadays, increasing demand of the customized products has led to an increased usage of rapid prototyping in the product development. However, the acquisition price of a rapid prototyping equipment is still too high that not every body can afford to buy one. To offer a wide access to the users who need physical prototypes, a connection of the rapid prototyping equipment to the Internet is a viable step. It would allow a large group of customers all over the world to use the manufacturing capability of a service provider offering this kind of manufacturing service. To realize how such an e-manufacturing concept can look like, a LOM-type 3D printer developed at KIST has been used as test site and connected to the Internet. A possible user can log on to the server of the equipment and view his STL file and start the building operation from a remote place. To see whether the operation runs properly, a CCD camera is used to transmit the actual state of operation online. The result so far proves the feasibility of rapid prototyping on the Internet as well as an order-adaptive manufacturing system via web.

  • PDF

Simulation and Analysis for Small Rapid Transit System (소형궤도열차시스템 모의시험 및 분석)

  • Jeong, Rag-Gyo;Kim, Yeon-Soo;Cho, Bong-Kwan;Choi, Hyo-Jeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.748-754
    • /
    • 2006
  • Small Rapid Transit System(SRTS) will be defined fully automated urban transit system providing a rapid and personalized door to door transport service. Conventional forms of public transit require passengers to collect in groups until a large vehicle is scheduled to travel on predetermined routes. In contrast, SRTS offers personal transport with no waiting, and takes passengers non-stop to their chosen destination. This is a transport system which is as convenient as, or in congested environments more convenient than, the car, but with minimal environmental impact. Accordingly the foundation study of choice system size for development of SRTS

  • PDF

Korea's Rapid Export Expansion in the 1960s: How It Began

  • YOO, JUNGHO
    • KDI Journal of Economic Policy
    • /
    • v.39 no.2
    • /
    • pp.1-23
    • /
    • 2017
  • Korea's rapid export expansion suddenly began in the early 1960s and boosted the economy. This paper's investigation finds that it began in 1961, as new export items appeared, export of which increased incomparably faster than that of the current export items at the time. How and why of this highly unusual phenomenon can best be explained by a major reform of foreign exchange system in February 1961. This goes against the widely held view that the switch in development policy from import substitution to export promotion in the mid-1960s was the reason for Korea's export success. Rather, the evidence indicates that the rapid export expansion led to the policy switch. The government's export promotion since the policy switch helped the rapid export expansion continue into the 1970s, despite the protectionist import policy.

Development of a Rapid Control Prototyping System Based on Matlab and USB DAQ boards (Matlab과 USB DAQ 장치를 이용한 Rapid Control Prototyping System 개발)

  • Lee, Young-Sam;Yang, Ji-Hyuk;Kim, Seuk-Yun;Kim, Won-Sik;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.912-920
    • /
    • 2012
  • In this paper, we propose a new and cost-effective RCP (Rapid Control Prototyping) system based on Matlab/Simulink and a DAQ (Data Acquisition) unit with the high speed USB communication interface. The proposed RCP system has a feature that a computer on which Simulink is running acts as a realtime controller and a DAQ unit performs data acquisition, transmission of the data to and from a computer, and the application of control data received from the computer. For its implementation, we develop 10 communication blocks each of which is constructed by using S-function. In order to increase the data communication speed and thus to reduce the sampling period of the overall control system, we propose to use a batch transfer strategy through the USB interface. The proposed RCP system has several advantages over existing methods such as good maintainability, portability due to the USB interface, low cost, and no necessity for C-code generation even though it can only be applied to control systems with moderate sampling rates. It is expected that the proposed RCP system can be useful in teaching control-related topics to undergraduate and graduate students.

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.