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ABSTRACT-Software-In-the-Loop Simulation (SILS) and Rapid Control Prototyping (RCP) are proposed as an
integrated development environment to support the development process from system design to implementation. SILS is
an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to
implementation based on automatic code generation. There are several toolsets that support control system design and
analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not
cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a
control system are considered as two separate processes which mean the conventional development process is not
connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system
modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real
execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate
the design and implementation phases which reduce the time-to-market and provide greater performance-assured design.
The establishment of SILS/RCP and the practical design approaches are presented.

KEY WORDS : SILS (Software-in-the-Loop Simulation), RCP (Rapid Control Prototyping), Co-simulation, Delay
effect, CACSD (Computer Aided Control System Design)

1. INTRODUCTION

Embedded control systems generally have stringent real-
time requirements. The controllers have to satisfy not
only control specifications, but also temporal require-
ments. In other words, they should ensure functional
correctness (the correct result is produced) and temporal
correctness (the result is produced at the correct time)
(Gu et al, 2004; Kopetz, 1997). However, most
Computer Aided Control System Design (CACSD) tools
do not support simulation of the temporal behavior of
control systems.

Control systems are normally implemented using
microcontroller units (MCUs). In many cases, computer
based control theories assume equidistant sampling
intervals and negligible or constant control delays which
are the latency between the sampling of inputs to the
controller and the generation of outputs (Henriksson et
al., 2002). These assumptions are not realistic and can
not be achieved in practice. Therefore, as the undeter-
ministic delays increase, the predictability of control
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systems decreases. The undeterministic temporal behavior
may reduce the system stability. As a result, the demands
for simulation environments considering temporal behavior
have increased.

There were two approaches for the design of CACSD
tools. One is a control engineering perspective. The other
is a software and computer engineering perspective.
From control engineering perspective, tools are designed
in order to support functional simulation and mathe-
matical analysis. A few of these tools can automatically
generate software to implement specified control algori-
thms. From a software and computer engineering per-
spective, a number of tools are developed to perform
mathematical analysis of temporal behavior. A few of
these tools have been developed to support automatic
software assembly that merges the system codes with a
real-time kernel or a real-time operating system (RTOS).
In the 1990’s, an effort to integrate the two different
environments began. ControlH and MetaH were intro-
duced by Steve Vestal at Honeywell Technology Center.
(Vestal, 1994) ControlH was a language designed to
support dynamical system modeling and control algori-
thm specification (Englehart and Jackson, 1994). MetaH
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was designed to support specification and analysis of
real-time, secure, fault-tolerant, and multi-processor
computer system architectures (Mitchell and Gauthier,
1986). This toolset offered the analysis of functional and
temporal behavior and automatic code generation. How-
ever, ControlH and MetaH used two different platforms,
so that control specifications and real-time specifications
need to be described by each language in different
environments. In order to design control systems using
these environments, users needed to be familiar with each
language and environment.

There have been several attempts to overcome the
problem using different platforms for the system analysis
including temporal behavior. They are RT/CS Co-design
(Eker and Cervin, 1999), DRTSS (Storch and Liu, 1996),
STRESS (Audsley et al., 1994), HaRTS (Zhu, 1994),
AIRES (Gu et al., 2004), and TRUETIME (Henriksson
et al., 2002; Cervin et al., 2003), which make it possible
to simulate the control algorithm in consideration of real-
time characteristics in the same platform. Other studies
have focused on automatic implementation combining
control algorithms with a real-time kemel or a RTOS.
These include RT-UML (UML Notation Guide, 1997),
AIDA (Torngren and Redell, 2000), MIRCOS (Rebeschief,
1999), and Giotto (Henzinger et al., 2003), which support
the real-time control system analysis and implemen-
tation. Nevertheless, in the previous studies, the design
and the implementation do not work under the identical
platform.

In this paper, Software-In-the-Loop Simulation (SILS)
and Rapid Control Prototyping (RCP) are proposed as a
simulation environment and an implementation environ-
ment. SILS and RCP integrate separated environments
into seamlessly connected development environments
based on one platform. The simulation result of SILS
holds temporal behavior, so that the result is affected by
the functional behavior of the control logic as well as the
temporal behavior according to real-time properties. The
control system designed by SILS environment can be
immediately transformed into- executable binary code
through the proposed RCP environment.

In section 2, the concept and the implementation of
SILS/RCP environments are described. In section 3, the
feasibility and the effectiveness is considered with a case
study.

2. SILS/RCP TOOLBOX

2.1. The Concept of SILS/RCP

The design process of the automotive Electronic Control
Unit (ECU) requires multidisciplinary approaches which
are related to the control engineering side and the
software engineering side. The traditional development
process can be represented as a V-shape model (Henzinger

P ~ 7 ™

Systom L System
Requirements |
— -

= Ve

7 System
H System
i . integration
i Architecture ’ e
1\ \/z ..... N Testing J
I Model " s.::z:lr:n !
Control i Validation e Testin i
Engineer N J TN ¢
Part \ /
Software I _XLM\ «”'—L\
Engineor Software | Software ‘
Part Architure Unit Testing
e .

-
| Software
Coding

R — —

Figure 1. System development V.

et al., 2003).

In the system V development diagram shown in Figure
1 (Toeppe et al., 1999), the whole process is clearly
divided into two parts which are control engineering and
software engineering. Control engineers are in charge of
acquiring system requirements, analyzing system archi-
tecture, and setting up the control logic. Software
engineers play a role in forming the control algorithms
into the software that will be embedded in MCUs.
However, there are potential problems caused by unreali-
stic assumptions, differences between continuous and
discrete time-domain, unconsidered real-time properties,
and so on. As the result of that, the controller perfor-
mance may not be consistent with the simulation results,
so that the design process must be iterative. In addition,
software engineers can not apply the changes to the
realization until control engineers finish modifying the
algorithms completely.

In order to reduce the time-to-market and support more
performance-assured controller design, SILS/RCP environ-
ments are developed. SILS/RCP environments work
under Matlab/Simulink® which is widely used in the
CACSD toolset. SILS/RCP environments have several
blocks that consider the temporal behavior of control
systems such as the real-time kernel, the task repres-
entation, and the network induced effect. The blocks for
the real-time kernel describe the scheduler’s behaviors.
The task is used for the scheduling unit, and time delays
of tasks are also considered for realistic simulation
results. SILS/RCP environments support the simulation
and realization of network based control systems for
Controller Area Network (CAN) and Local Interconnect
Network (LIN) which are most popularly applied to the
automobile.

In SILS, control engineers are able to achieve a
simulation that is more similar to the execution on MCUs
from the early design phase. RCP makes it easy to
implement the control logic so that control engineers can
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Figure 2. Modified system development V.

validate the performance of algorithms on MCUs, even
though the design of whole systems may not be com-
pleted. The goal of our research is to build a development
framework for real-time embedded control systems that
is composed of a timing analysis environment (Response-
time Analysis Tool: RAT) (Choi ef al., 2004), SILS, RCP,
and Hardware-In-the-Loop Simulation (HILS). By using
the development framework, a modified development V-
process is proposed as shown in Figure 2 (Lee ef al,
2004a; Lee et al., 2004b; Song et al., 2003).

In the modified system development V, the design
process is simplified and software engineers are not
required because the software design and the implemen-
tation steps are integrated. Control engineers can develop
the control law and verify the performance by them-
selves. Since the block representations are equivalent to
the software realization using RCP, the reuse of the
verified algorithim blocks may mean the reuse of the
reliable software. In many cases, the error of software is
caused by error-prone hand-coding. The automatic code
generation may be the one of the solutions for reliable
system implementation.

SILS/RCP environments contribute toward seamless
development process from design phases to implemen-
tation phases.

2.2. The Structure of SILS/RCP

SILS/RCP toolbox is shown in Figure 3 and 4.

In Figure 3, each subsystem is used for the real-time
kernel configuration, the task representation, the system
delay, and the in-vehicle network simulation.

The each block of RCP toolbox is related to the
specific hardware modules of the MCU. According to the
required hardware modules which are digital I/O, Analog-
To-Digital (ATD) converter, Timer, CAN, etc., control
engineers should replace the inputs and the outputs of
control blocks with the corresponding RCP blocks before
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Figure 3. SILS toolbox.
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Figure 4. RCP toolbox.

the implementation through RCP.

2.2.1. Real-time Kernel

In Simulink®, the execution of models is managed by
internal state transitions, as the sampling rate is fixed or
variable. However, in this scheme, it is not easy to
express the real execution on the MCU scheduled by a
real-time kernel or a RTOS. In order to support the
simulation in which the task is the unit for the execution,
the real-time kernel is used in SILS. The real-time kernel
is following the static cyclic scheduling policy. The
attributes configured in SILS for the scheduler are
succeeded by RCP, so that the scheduling properties are
maintained after the implantation.

Figure 5 shows the block of the Real-Time Kernel, and
Figure 6 shows the attributes of the Real-Time Kernel.
The scheduler is called in each Hyper period. After the

monitoring
RT Kernel

func_catl

" RT kernel

Figure 5. Real-Time Kemel based on static cyclic
scheduling policy.
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Figure 6. Real-time Kernel configuration.

release time defined in the Schedule release time table,
the scheduler activates the corresponding task listed in
the Schedule task table. The task release is fulfilled by the
func_call signal.

2.2.2. Task modeling

In order to facilitate modularization, the concept of the
task is adopted. The task is treated as a unit of function
that is scheduled and executed by the system because
SILS is scheduled based on the static cyclic scheduling
policy (Liu, 2000). The task is defined as follows.

* Task — An encapsulated sequence of operations that
executes independently of other tasks (Douglass, 1999).

The task model in SILS/RCP is shown in Figure 7.
Figure 8 is the subsystem of the Task Module in Figure 7.
The left block, Task, is related to the function of the task.
The Execution delay block is the time delay for the
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Figure 8. Subsytem of task module.
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Figure 9. Concept of task execution.

execution time of the task.

The execution of the unit task consists of two parts:
computation and output generation. The computations of
the task are accomplished at the beginning of the task as
shown Figure 9. The task output is generated after some
delay defined by the Execution Delay.

The execution time of the task is governed by the
following definition.

* Task execution time — The amount of time required to
complete the execution of the task when it is executed
alone and has all the resources it requires (Liu, 2000).

In order to measure the execution time of the unit task,
the generated code for the unit task from RCP is used,
since interrupt sources and preemptions are not allowed.

2.2.3. Network modeling
SILS/RCP environments provide the simulation and the
implementation of CAN and LIN network protocol.
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Figure 7. Task representation in SILS/RCP.

. v
4 2 o
E LIN §_ £ Bus
z 20kbps g 2
i
& 5
Sffunclon calt  Header
Baster Task
L T LN R
b femoo b BT} (BN |
NHumdar >| L0 lD»UV lB.G‘
Ul Sender LN Receiver L send LI Reosve
lessage Nescage

Figure 10. Network model of LIN protocol.



INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION 349

g
GAN H
w WBOKbps % AN Bus
a L3
7] =
Txp RecCAM ID: 0O
AR ID: O
Call Sender CAN Receiver
GAN o | CAN Ry
o 0 0.9
CAN Send CAN Racalve
Meszags Sessage

Figure 11. Network model of CAN protocol.

When control engineers design the distributed control
system based on in-vehicle networks, SILS/RCP environ-
ments support the analysis of effects which are caused by
network induced bus delays, communication rates, and so
on. This allows a more realistic simulation can be
performed from the early design phase. The simulation
result from SILS makes it easier to evaluate the perfor-
mance from a timing problem perspective.

2.2.4. Implementation using RCP
RCP is an implementation environment that generates the
executable code from the designed model in SILS.
Because SILS and RCP use the identical platform and
same block representations based on Matlab/Simulink®,
RCP can be realized using Real-Time Workshop
Embedded Codder presented by Mathworks®. Embedded
Codder creates only general C code, so additional work is
required to connect Embedded Codder environment to
the specific hardware. In this research, MCISDP256B
produced by freescale is selected as the target MCU. In
order to link Embedded Codder to the target, HC(S)12
HAL' which is developed and distributed by ACE Lab” is
used (Hodge et al., 2004).

Since RCP provides the implementation environment,
the performance verification on the MCU is available
from the early design phase. As a result, the process from

the design phase to the implementation phase is simpli-
fied.

3. CASE STUDY: ELECTRONIC THROTTLE
CONTROLLER DESIGN

In order to validate the feasibility and the effectiveness of
SILS/RCP environments, the design process of an Elec-
tronic Throttle Controller (ETC) is described.

3.1. ETC Modeling in SILS
An ETC model for SILS is shown in Figure 12. Figure 13
shows the controller of the ETC. In this case study, a PID
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Figure 12. ETC model for SILS.
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Figure 13. PID Controller of ETC for SILS.
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controller is wsed which is divided into three tasks:
Sensing_Task, Computation_Task, and Actuation_Task.
In the Sensing_Task, the throttle angle is computed from
the sensing value of the ATD converter. In the
Computation_Task, the control input is calculated from
the differences between the current throttle angle and the
reference angle. In the Actuation_Task, the PWM signal
is generated according to the control input of the
Computation_Task.

3.2. Simulation and Implementation Result

The result from a simulation that does not consider
temporal behaviors of the target system is shown in
Figure 14.

The model used to generate the data in Figure 14 is
transformed to the block diagram shown in Figure 12.
The control gains are fixed in order to compare the
previous result to the result given by SILS. The schedul-
ing attributes which are the execution time and the
release time are configured. The execution times of the
Sensing_Task, Computation_Taks, and Actuatioin_Task

'"HC(S)12 Hardware Abstract Layer: http://www.acelab.org/
HAL

2Automotive Contro] and Electronics Laboratory at Hanyang
University in Seoul, Korea http://www.acelab.org
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Figure 14. Simulation result without SILS.
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Figure 15. Simulation result with SILS.

are 1 ms, 2 ms, and 1 ms, respectively. These execution
times are measured according to the definition of the
execution time. The release times of the tasks are O ms, 1
ms, and 4 ms.

Figure 15 presents the simulation result in SILS
environment. In this figure, overshoot, undershoot, and
time delay in falling time are observed which are not seen
in the simulation result generated without SILS. After
gain tuning under SILS environment, the control perfor-
mance is improved as can be seen in Figure 16.
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Figure 16. After gain turning with SILS.
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Applying the tuned gain, executable code is generated
by RCP. In Figure 17, the implemented result is shown.

From the Figures 16 and 17, the implemented result is
reasonable except for the overshoot in the rising time.
The occurrence of the overshoot is caused by modeling
uncertainties and nonlinearity around 80°.

4. CONCLUSION

In this paper, SILS/RCP environments are proposed to
support a seamless development process from the design
phase to the implementation phase. The feasibility of the
environments is validated from the ETC design process.

Control engineers are able to obtain more realistic
simulation results using SILS environment from the early
design phase. RCP supports an immediate phase shift
from the design phase to the implementation phase. The
integrated development environment which consists of
SILS and RCP can simplify the development process,
reduce the time-to-market, and provide greater perfor-
mance-assured design. Especially, control engineers develop
the control algorithms and implement the controller to the
MCU using identical platform and same models with
SILS/RCP environments.
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