In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.
Journal of Information Technology Applications and Management
/
v.16
no.4
/
pp.79-92
/
2009
With the rising reliance on market estimation through customer analysis in customer-centered marketing, there is a rapid increase in the amount of personal data owned by corporations. There has been a corresponding rise in the customers' interest in personal information protection, and the problem of personal information leakage has risen as a serious issue. The purpose of this research is to develop a diagnosis model for personal information protection that is suited to our country's corporate environment, and on this basis, to present diagnostic instruments that can be applied to domestic corporations. This diagnosis model is a structural equation model that schematizes the degree of synthetic effect that administration factors and estimation items have on the protection of personal information owned by corporations. We develop the model- consisting of the administration factors for personal information protection and the measurement items of each factor- using the development method of standardized structural equation model. We then present a tool through which the administration factors and estimation items verified through this model can be used in the diagnosis for personal information protection in corporations. This diagnostic tool can be utilized as a useful instrument to prevent in advance the leakage of personal information in corporations.
A knowledge based expert system is a computer program that emulates the reasoning process of a human expert in a specific problem domain. This paper presents an expert system to diagnose the various faults in power system. The developed expert system is represented considering two points; the possibility of solution and the fast processing speed. As uncertainties exist in the facts and rules which comprise the knowledge base of the expert system, Certainty Factor, which is based on the confirmation theory is used for the inexact reasoning. Also, as the diagnosis problem requires the inductive reasoning process in nature, the solution is imperfect and not unique in general. So the expert system is designed to generate all the possible hypothesis in order of the possibility and also it can explain the propagation procedure of the faults for each solution using the built in backtracking mechanism. In realization of the expert system, the processing speed is greatly dependent upon the problem representation, reasoning scheme and search strategy. So, in this paper the fault diagnosis problem itself is analysed from the view point of Artificial Intelligence and as a result, the expert system has the following basic features. 1) The certainty factor is adopted in the inference engine for inexact reasoning. 2) Problem apace is represented using the problem reduction technique. 3) Bidirectional reasoning scheme is used. 4) Best first search strategy is adopted for rapid processing. The expert system was developed us ing PROLOG language.
The early and accurate detection of plant viruses is an essential component to control those. Because the globalization of trade by free trade agreement (FTA) and the rapid climate change promote the country-to-country transfer of viruses and their hosts and vectors, diagnosis of viral diseases is getting more important. Because symptoms of viral diseases are not distinct with great variety and are confused with those of abiotic stresses, symptomatic diagnosis may not be appropriate. From the last three decades, enzyme-linked immunosorbent assays (ELISAs), developed based on serological principle, have been widely used. However, ELISAs to detect plant viruses decrease due to some limitations such as availability of antibody for target virus, cost to produce antibody, requirement of large volume of sample, and time to complete ELISAs. Many advanced techniques allow overcoming demerits of ELISAs. Since the polymerase chain reaction (PCR) developed as a technique to amplify target DNA, PCR evolved to many variants with greater sensitivity than ELISAs. Many systems of plant virus detection are reviewed here, which includes immunological-based detection system, PCR techniques, and hybridization-based methods such as microarray. Some of techniques have been used in practical, while some are still under developing to get the level of confidence for actual use.
In human immunodeficiency virus (HIV)-infected patients, Pneumocystis jirovecii pneumonia (PCP) is a well-known opportunistic infection and its management has been established. However, PCP is an emerging threat to immunocompromised patients without HIV infection, such as those receiving novel immunosuppressive therapeutics for malignancy, organ transplantation, or connective tissue diseases. Clinical manifestations of PCP are quite different between patients with and without HIV infections. In patients without HIV infection, PCP rapidly progresses, is difficult to diagnose correctly, and causes severe respiratory failure with a poor prognosis. High-resolution computed tomography findings are different between PCP patients with HIV infection and those without. These differences in clinical and radiological features are due to severe or dysregulated inflammatory responses that are evoked by a relatively small number of Pneumocystis organisms in patients without HIV infection. In recent years, the usefulness of polymerase chain reaction and serum β-D-glucan assay for rapid and non-invasive diagnosis of PCP has been revealed. Although corticosteroid adjunctive to anti-Pneumocystis agents has been shown to be beneficial in some populations, the optimal dose and duration remain to be determined. Recent investigations revealed that Pneumocystis colonization is prevalent and that asymptomatic carriers are at risk for developing PCP and can serve as the reservoir for the spread of Pneumocystis by airborne transmission. These findings suggest the need for chemoprophylaxis in immunocompromised patients as well as infection control measures, although the indications remain controversial. Because a variety of novel immunosuppressive therapeutics have been emerging in medical practice, further innovations in the diagnosis and treatment of PCP are needed.
Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.
Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.2012-2027
/
2019
Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.
In this study, we applied ENERWATER to evaluate the energy consumption labeling of wastewater treatment plants in Korea using the Korea sewerage statistics data. The results showed that the energy label status was excellent in the SBR process for small and medium-scale wastewater treatment plants and the A2O process for large-scale wastewater treatment plants. The energy labeling of wastewater treatment plants of 50,000 tons capacity was excellent. The statuses of metropolitan cities and Jeollanam-do province were excellent. We analyzed the effects of renewable energy on wastewater treatment plants' energy consumption and found out that digestion gas for large-scale plants and photovoltaic energy for small-scale plants were effective in improving energy labeling. In addition, we compared the energy labels of four wastewater treatment plants in "Z" city and wastewater treatment plant "X" had the best energy label, and the wastewater treatment plants "V" and "Y" had to be selected as priorities for the energy diagnosis and improvement project. In a comprehensive conclusion, the applicability of ENERWATER was confirmed based on sewage statistics data and labeling can be used to set priorities for the energy diagnosis and improvement project.
The main objective of pathologists is to achieve accurate lesion diagnoses, which has become increasingly challenging due to the growing number of pathological slides that need to be examined. However, using digital technology has made it easier to complete this task compared to older methods. Digital pathology is a specialized field that manages data from digitized specimen slides, utilizing image processing technology to automate and improve analysis. It aims to enhance the precision, reproducibility, and standardization of pathology-based researches, preclinical, and clinical trials through the sophisticated techniques it employs. The advent of whole slide imaging (WSI) technology is revolutionizing the pathology field by replacing glass slides as the primary method of pathology evaluation. Image processing technology that utilizes WSI is being implemented to automate and enhance analysis. Artificial intelligence (AI) algorithms are being developed to assist pathologic diagnosis and detection and segmentation of specific objects. Application of AI-based digital pathology in biomedical researches is classified into four areas: diagnosis and rapid peer review, quantification, prognosis prediction, and education. AI-based digital pathology can result in a higher accuracy rate for lesion diagnosis than using either a pathologist or AI alone. Combining AI with pathologists can enhance and standardize pathology-based investigations, reducing the time and cost required for pathologists to screen tissue slides for abnormalities. And AI-based digital pathology can identify and quantify structures in tissues. Lastly, it can help predict and monitor disease progression and response to therapy, contributing to personalized medicine.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.