• Title/Summary/Keyword: Rao-3 algorithm

Search Result 18, Processing Time 0.028 seconds

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Optimization of spatial truss towers based on Rao algorithms

  • Grzywinski, Maksym
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.367-378
    • /
    • 2022
  • In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Three Stage Neural Networks for Direction of Arrival Estimation (도래각 추정을 위한 3단계 인공신경망 알고리듬)

  • Park, Sun-bae;Yoo, Do-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2020
  • Direction of arrival (DoA) estimation is a scheme of estimating the directions of targets by analyzing signals generated or reflected from the targets and is used in various fields. Artificial neural networks (ANN) is a field of machine learning that mimics the neural network of living organisms. They show good performance in pattern recognition. Although researches has been using ANNs to estimate the DoAs, there are limitationsin dealing with variations of the signal-to-noise ratio (SNR) of the target signals. In this paper, we propose a three-stage ANN algorithm for DoA estimation. The proposed algorithm can minimize the performance reduction by applying the model trained in a single SNR environment to various environments through a 'noise reduction process'. Furthermore, the scheme reduces the difficulty in learning and maintains efficiency in estimation, by employing a process of DoA shift. We compare the performance of the proposed algorithm with Cramer-Rao bound (CRB) and the performances of existing subspace-based algorithms and show that the proposed scheme exhibits better performance than other schemes in some severe environments such as low SNR environments or situations in which targets are located very close to each other.

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

System Performance Bound in Target Motion Analysis

  • Yoon, Dong-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.22-26
    • /
    • 1998
  • This paper proposes a simple method to measure system's performance in target tracking problems. Essentially employing the Cramer-Rao Lower Bound (CRLB) on tracking accuracy, an algorithm of predicting system's performance under various scenarios is developed. The input data is a collection of measurements over tim from sensors embedded in Gaussian noise. The target of interest may not maneuver over the processing time interval while the own ship observing platform may maneuver in an arbitrary fashion. The proposed approach is demonstrated and discussed through simulation results.

  • PDF

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter

  • Lee, Jin-Seok;Cho, Shung-Han;Hong, Sang-Jin;Lim, Jae-Chan;Oh, Seong-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1632-1652
    • /
    • 2011
  • This paper considers the object tracking problem in three dimensional (3-D) space when the azimuth and elevation of the object are available from the passive acoustic sensor. The particle filtering technique can be directly applied to estimate the 3-D object location, but we propose to decompose the 3-D particle filter into the three planes' particle filters, which are individually designed for the 2-D bearings-only tracking problems. 2-D bearing information is derived from the azimuth and elevation of the object to be used for the 2-D particle filter. Two estimates of three planes' particle filters are selected based on the characterization of the acoustic sensor operation in a noisy environment. The Cramer-Rao Lower Bound of the proposed 2-D particle filter-based algorithm is derived and compared against the algorithm that is based on the direct 3-D particle filter.

An efficent method of binocular data reconstruction

  • Rao, YunBo;Ding, Xianshu;Fan, Bojiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3721-3737
    • /
    • 2015
  • 3D reconstruction based on binocular data is significant to machine vision. In our method, we propose a new and high efficiency 3D reconstruction approach by using a consumer camera aiming to: 1) address the configuration problem of dual camera in the binocular reconstruction system; 2) address stereo matching can hardly be done well problem in both time computing and precision. The kernel feature is firstly proposed in calibration stage to rectify the epipolar. Then, we segment the objects in the camera into background and foreground, for which system obtains the disparity by different method: local window matching and kernel feature-based matching. Extensive experiments demonstrate our proposed algorithm represents accurate 3D model.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.