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Abstract

Researchers have recently shown an increased interest in estimating the

direction-of-arrival (DOA) of wideband noncircular sources, but existing

studies have been restricted to subspace-based methods. An off-grid sparse

recovery-based algorithm is proposed in this paper to improve the accuracy

of existing algorithms in low signal-to-noise ratio situations. The covariance

and pseudo covariance matrices can be jointly represented subject to block

sparsity constraints by taking advantage of the joint sparsity between signal

components and bias. Furthermore, the estimation problem is transformed

into a single measurement vector problem utilizing the focused operation,

resulting in a significant reduction in computational complexity. The pro-

posed algorithm’s error threshold and the Cramer–Rao bound for wideband

noncircular DOA estimation are deduced in detail. The proposed algo-

rithm’s effectiveness and feasibility are demonstrated by simulation results.
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1 | INTRODUCTION

The field of array signal processing has a lot of interest in
direction-of-arrival (DOA) estimation, which is widely
used in radar, sonar, and wireless communications. Sig-
nals are supposed to be circularly symmetrical Gaussian
distributed in traditional DOA estimation methods.
However, in practice, amplitude modulated or binary
phase-shift keying (BPSK) modulated signals are com-
monly used in telecommunications or satellite systems.
Researchers have demonstrated that exploiting the
noncircularity property of the signals can improve the
performance of DOA algorithms over the last few
decades. Gounon and others [1] were the first to extend

the classical multiple signal classification (MUSIC)
method to the noncircular-MUSIC (NC-MUSIC) method.
In Chargé and others [2], the DOA estimation problem
for noncircular sources was transformed into the polyno-
mial rooting problem, and the NC-Root-MUSIC method
was developed. Abeida and Delmas [3] examined the
asymptotic performance of some MUSIC-like methods
for noncircular DOA estimation. The improved algorithm
was then used to estimate and identify a combination of
noncircular and circular sources [4]. The researchers used
a variety of methods to improve the estimation accuracy,
including the high-order cumulant-based method [5] and
the biquaternion-based method [6]. With a high signal-
to-noise ratio (SNR) and sufficient snapshots, these
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subspace-based algorithms can accurately estimate DOA
for noncircular sources. The researchers have explored
some sparse recovery (SR)-based algorithms to overcome
the limitations of subspace-based algorithms since the
development of compressed sensing theory and its wide-
spread application in array signal processing. Liu and
others [7] considered the noncircular covariance matrix
sparse representation (NC-CMSR) method for noncircu-
lar DOA estimation through the joint sparse representa-
tion of the covariance and pseudo covariance matrices of
incident signals. Similarly, Yang and others [8] estimated
the signal subspace using a joint sparse reconstruction of
two terms. Consequently, Cai and others [9] extended
NC-CMSR to a coprime array. In addition, Zheng and
others [10] developed a sparse Bayesian learning (SBL)-
based algorithm for off-grid noncircular DOA estimation.
On the other hand, all of the above DOA estimators are
mostly limited to narrowband noncircular sources and
cannot be used directly for wideband signals.

In a variety of practical applications, wideband
signals are nearly ubiquitous. Previous studies about
wideband DOA estimation methods can be categorized
into three types: (a) maximum likelihood (ML) methods
[11–13], (b) subspace-based algorithms [14–23], and
(c) SR-based algorithms [24–30]. Multi-dimensional
search is required by ML approaches, which are bur-
dened by enormous computational complexities. On the
other hand, subspace-based algorithms are more efficient.
Several methods utilizing time-delayed samples have
been developed in the time domain of wideband signals
[14–16]. The incoherent signal subspace method (ISSM)
[17] and the coherent signal subspace method (CSSM)
[18] are two frequency schemes. CSSM often uses the
focusing operation to align the signal subspace and
concentrate the dispersed energy at different frequency
bins [21–23], whereas ISSM typically employs narrow-
band signal processing methods for each frequency bin
[19,20].

The theory of compressed sensing has also been
widely used in wideband DOA estimation. The difference
from the SR-based narrowband methods is that the joint
sparsity of wideband sources should be taken into
account. Because of the disparity of array manifold matri-
ces at different frequency bins, previous research has pri-
marily focused on three ideas for building the sparse
wideband signal model. To avoid the array manifold
matrices corresponding to different frequency bins, the
over complete dictionary could be constructed using the
correlation function of the signals [24]. On the other
hand, the correlation function can only be calculated in a
few specific scenarios. The second idea is to formulate
the wideband signal as a block SR problem [25–27].
Although the dictionary contains array manifold matrices

at all frequency bins, the dictionary’s large size may
result in enormous computational complexity. The third
idea is to transform the signal model into the multiple
measurement vectors (MMV) problem [28–30]. Different
manifold matrices can be concentrated into a single dic-
tionary. Because the dictionary is smaller, MMV-based
methods are more efficient than the block sparse-based
approaches.

A few studies on noncircular wideband DOA esti-
mation have recently been performed. Based on the
baseband form of the steering technique [31], time-
delayed array snapshot vector was considered in Huang
and others [32] to align the wideband noncircular sig-
nal. Some algorithms, such as the envelope aligned
inverse power (EAIP) method [32], the complex enve-
lope aligned rank-reduction (EARR) method [33], and
the aligned propagator method (APM) [34], have been
developed based on this conceptual framework to real-
ize noncircular wideband DOA estimation. Yang and
others [35] extended the method in Gou and others [6]
and proposed the wideband biquaternion noncircular
cumulant (WBNC) method to process the non-Gaussian
and noncircular wideband sources. Existing noncircular
wideband DOA estimators share the same flaws as
subspace-based methods; a priori information of source
number is required, and the performance degrades at
low SNR. Furthermore, for the multipath signal model,
these methods underperform.

To address these issues, the compressive sensing the-
ory is used for the first time in this paper to solve the
wideband noncircular DOA estimation problem, and the
focused based off-grid wideband noncircular (FOGWNC)
DOA estimation algorithm is proposed. First and fore-
most, a novel signal model for multipath noncircular
wideband signals is proposed in the frequency domain.
After preprocessing with Taylor expansion, noise reduc-
tion, and dictionary focusing, two single measurement
vector problems are formulated. The covariance and
pseudo covariance matrices can be jointly represented
subject to block sparsity constraints, taking advantage of
the joint sparsity between signal components and bias.
Finally, convex optimization can be used to obtain
results. The proposed method does not require source
number. In low SNR, simulation results show that
FOGWNC can efficiently address noncircular wideband
DOA estimation and obtain more accurate results than
existing subspace-based methods [32–35]. In addition,
the proposed algorithm’s error thresholds and the Cra-
mer–Rao bound (CRB) for wideband noncircular DOA
estimation are deduced in detail.

The remainder of this paper is organized in the fol-
lowing manner: In section 2, the multipath wideband
noncircular signal model for sparse reconstruction is
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studied. In section 3, the off-grid model is introduced,
followed by the FOGWNC algorithm. In section 4, simu-
lation is used to compare the performance and computa-
tional time of various algorithms. The following
notations are used in this paper. �ð Þ�, �ð ÞT, and �ð ÞH are
mean conjugation, transposition, and conjugation trans-
position, respectively. R �ð Þ and I �ð Þ mean the real and
the imaginary parts. blkdiag �ð Þ and vec �ð Þ denote the
block diagonal matrix and the vectorization operator,
respectively. diag �ð Þ means diagonal matrix or diagonals
of a matrix. �k k represents the matrix norm.

N
,
J

, and
� mean the Kronecker product, Khatri–Rao product, and
Hadamard product, respectively. O is the zero matrix,
and I is the identity matrix.

2 | PROBLEM FORMULATION

Suppose that Knc signals from K far-field independent
wideband noncircular sources impinging on the linear
array with M sensors from different directions. Each
signal can be divided into Pk groups, which means that
Knc ¼

PK
k¼1Pk. The demodulated output baseband signal

of the mth sensor can be formulated as

ym tð Þ¼
XK
k¼1

XPk

i¼1

ρkisk tþ τm,θki þ ιkið Þej2πf 0 τm,θkiþιkið Þ þnm tð Þ,

ð1Þ

where θki denotes the direction of the signal from the
kth source and the ith path. sk tð Þ is the zero-mean
complex envelope of the kth line-of-sight (LOS) wideband
signal, and nm tð Þ is the circular additive noise with
the mth sensor. f 0 is the carrier frequency, τm,θki ¼
dm sinθki=c denotes the propagation delay of kith signal,
and dm is the distance between the mth sensor and the
reference point c and represents the speed of propagation.
ρki and ιki are the attenuation factor and multipath
propagation delay, respectively. The multipath delay
is assumed to be no less than the correlation time,
implying that the multipath signals are roughly
uncorrelated with the LOS signal. For noncircular sig-
nals, it can be verified that E s2k tð Þ� �¼ ςke

jϕkE sk tð Þj j2� �
,

where ςk and ϕk are the noncircularity rate and
noncircularity phase, respectively. After sampling with
f s, the output vector in the time domain is divided into
Q nonoverlapping groups with the same length L.
The baseband signal in the frequency domain can
be deduced through the discrete Fourier transform [32],
that is,

Y l,q½ � ¼A θ, lð ÞB l½ �ΓS l,q½ �þN l,q½ �
¼A θ, lð ÞX l,q½ �þN l,q½ �, ð2Þ

where S l,q½ � and N l,q½ � mean the signal and noise vector
corresponding to the lth frequency bin and the qth seg-
ment, respectively. X l,q½ � ¼B l½ �ΓS l,q½ � can be regarded as
the signal components to be estimated. A θ, lð Þ is the array
manifold with the lth frequency bin, and B l½ � and Γ con-
tain the information of attenuation factor and multipath
propagation delay, respectively. The above matrix can be
formulated as follows:

A θ, lð Þ¼ A1 θ, lð Þ, A2 θ, lð Þ, � � �, AK θ, lð Þ½ �,
Ak θ, lð Þ¼ a k1, lð Þ, a k2, lð Þ, � � �, a kPk, lð Þ½ �,

a ki, lð Þ¼ e j2π f lþf 0ð Þτ1,θki , e j2π f lþf 0ð Þτ2,θki , � � �, e j2π f lþf 0ð ÞτM,θki

� �T
,

B l½ � ¼ blkdiag B1 l½ �, B2 l½ �, � � �, BK l½ �ð Þ,
Bk l½ � ¼ diag e j2π f lþf 0ð Þιθk1 , e j2π f lþf 0ð Þιθk2 , � � �, e j2π f lþf 0ð ÞιθkPk

� �
,

Γ¼ blkdiag ρ1, ρ2, � � �, ρKð Þ, ρk ¼ ρk1, ρk2, � � �, ρkPk

� �T
:

ð3Þ

It is worth noting that the frequency bins of wideband
sources with bandwidth B are distributed between the
lowest frequency f 0�B=2 and the highest frequency in
most previous studies. In contrast to the traditional model
for wideband circular sources, S l,q½ � is located between
�B=2 and B=2 in the frequency domain, and f l means
the lth frequency bin of the baseband signal. In other
words, the frequency bins in (2) that correspond to the
steering vector and the signal’s frequency bins are not the
same. The array output covariance matrix and the pseudo
covariance matrix of each frequency bin can be estimated
from limited snapshots in practice applications, that is

bRc l½ � ¼ 1
Q

XQ�1

q¼0

Y l,q½ � �YH l,q½ �,

bRnc l½ � ¼ 1
Q

XQ�1

q¼0

Y l,q½ � �YT l,q½ �:
ð4Þ

This paper ιki1 � ιki2 i1 ≠ i2ð Þ is supposed to be large
enough that different multipath signals from the same
source are approximately uncorrelated from each other.
Based on this assumption, the covariance matrices can be
vectorized as

rc l½ � ¼ vec Rc l½ �ð Þ¼ A� θ, lð Þ � A θ, lð Þð Þγc l½ �þσl2iM2

rnc l½ � ¼ vec Rnc l½ �ð Þ ¼ A θ, lð Þ � A θ, lð Þð Þγnc l½ �,
ð5Þ
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where iM2 ¼ vec IMð Þ and

γc l½ � ¼ γc 11, l½ �, …, γc kPk, l½ �, …, γc KPK , l½ �½ �T,
γnc l½ � ¼ γnc 11, l½ �, …, γnc kPk, l½ �, …, γnc KPK , l½ �½ �T: ð6Þ

Notably, γc ki, l½ �≠ γnc ki, l½ �. γc ki, l½ � is the power of the
ki th entry in X l,q½ �, and γnc ki, l½ � contains the
noncircular information from the pseudo covariance
matrix.

3 | PROBLEM FORMULATION

For wideband noncircular sources, a novel off-grid DOA
estimation algorithm is proposed in this section.

3.1 | Off-grid model for each frequency
bin

It is obvious that the noise component only exists in
diagonal elements of the covariance matrix Rc l½ �.
Noise can be reduced at the expense of degree-
of-freedom to improve performance. The selecting
matrix J is defined as J¼ J1, J2, …, JM�1½ �T, where Jm ¼
�em Mþ1ð Þ�Mþ1, …, �em Mþ1ð Þ
� �

and �ei is an all-zero vector
except the element at ith index is one. The observation
vector can be formulated by vectorizing the covariance
matrix after the noise reduction preprocess:

yc l½ � ¼ J �vec Rc l½ �ð Þ ¼ JAc θ, lð Þγc l½ �,
ync l½ � ¼Anc θ, lð Þγnc l½ �,

ð7Þ

where ync l½ � ¼ rnc l½ � is the virtually noncircular signal
vector. The array manifold can be expressed as

Ac θ, lð Þ¼A� θ, lð Þ � A θ, lð Þ¼ ac 11, lð Þ, …, ac KPK , lð Þ½ �,
Anc θ, lð Þ¼A θ, lð Þ � A θ, lð Þ¼ anc 11, lð Þ, …, anc KPK , lð Þ½ �:

ð8Þ

In traditional SR-based on-grid methods, the incident sig-
nal is supposed to be uniformly distributed in Kg the pre-
defined grid eθ¼ θ1, θ2, …, θKg

� �
. The observation model

can be denoted as

yc l½ � ¼ JAc
eθ, l� �

γ ∘
c l½ �, ync l½ � ¼Anc

eθ, l� �
γ ∘
nc l½ �, ð9Þ

where �ð Þ ∘ means the entries corresponding to the
grid. Suppose that θki is the real direction, for
kg � 1, 2, � � �, Kg

� �
, we have

γ ∘
c l½ � ¼ γc ki, l½ �, θkg ¼ θki,

0, θkg ≠ θki,

�
γ ∘
nc l½ � ¼

γnc ki, l½ �, θkg ¼ θki,
0, θkg ≠ θki:

�
ð10Þ

The grid is always set to be dense enough to ensure the
accuracy of DOA estimation, but the prohibitive compu-
tational complexity restricts the development of on-grid
methods. Furthermore, in practice, the true angle is
unlikely to be exactly on the grid. The off-grid model has
been widely researched in recent years to overcome the
problem caused by the model mismatch. Suppose that κg
is the nearest index to ki and r¼ θ2�θ1 is the step size of
the original uniform grid. Using Taylor expansion θκg , the
steering vector associated with the predefined grid of each
frequency bin can be approximated and formulated as

ac ki, lð Þ≈ ac κg, l
	 
þa0c κg, l

	 

θki�θκg
	 


,

anc ki, lð Þ≈ anc κg, l
	 
þa0nc κg, l

	 

θki�θκg
	 


,
ð11Þ

where

a0c κg, l
	 
¼ ∂ac κg, l

	 

∂θκg

, a0nc κg, l
	 
¼ ∂anc κg, l

	 

∂θκg

: ð12Þ

Denote the derivative matrix related to the grid as

A0
c
eθ, l� �

¼ a0c 1, lð Þ, …, a0c Kg, l
	 
� �

,

A0
nc
eθ, l� �

¼ a0nc 1, lð Þ, …, a0nc Kg, l
	 
� �

:
ð13Þ

Each frequency bin shares the same bias α¼
α1, …, αKg

� �T
and the corresponding matrix Δ¼ diag αf g,

where

αkg ¼
θki�θκg , kg ¼ κg

0, kg ≠ κg

�
: ð14Þ

The model (9) can be redefined as

yc l½ �≈ J Ac
eθ, l� �

þA0
c
eθ, l� �

Δ
� �

γ ∘
c l½ �,

ync l½ �≈ Anc
eθ, l� �

þA0
nc
eθ, l� �

Δ
� �

γ ∘
nc l½ �:

ð15Þ
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3.2 | FOGWNC algorithm

The focused operation is applied for the off-grid model
in this subsection to reduce computational complexity
and improve accuracy. The rotational signal subspace
operation can be used to reduce the error between the
array manifold focused by each frequency bin and the
array manifold of the reference frequency bin. In other
words, the reference frequency band’s signal compo-
nents are all aligned to the reference frequency bin,
that is,

min
T lð Þ

A θ, lrð Þ�TlA θ, lð Þk kF s:t: TH
l Tl ¼ I, ð16Þ

where Tl is the focusing matrix corresponding to the lth
frequency bin, and lr is the index of reference frequency
point. One particular solution of (16) is Tl ¼UlVH

l . Ul

and Vl are the left singular matrix and right singular
matrix of A θ, lð ÞAH θ, lrð Þ, respectively. From the property
of singular value decomposition, Ul and Vl are unitary
matrices. Let Rrc and Rrnc be the focused covariance
matrix and pseudo covariance matrix. The novel vector-
ized models are given by

rrc ¼ vec Rrcð Þ¼ vec
1
L

XL
l¼1

TlRc l½ �TH
l

!

¼ 1
L

XL
l¼1

T�
l �Tl

	 

A� θ;lð Þ � A θ;lð Þ½ �γc l½ �

þ1
L

XL
l¼1

T�
l�Tl

	 

σ2l iM2 ¼ 1

L

XL
l¼1

T�
lA

� θ;lð Þ � TlA θ;lð Þ� �
γc l½ �

þ1
L

XL
l¼1

σ2l vec UlVH
l VlUH

l

	 

≈ A� θ;lrð Þ � A θ;lrð Þ½ � � 1

L

XL
l¼1

γc l½ �

þ1
L

XL
l¼1

σ2l �vec Ið Þ¼Ac θ;lrð Þγcþσ2iM2 ,

rrnc ¼ vec Rrncð Þ¼ vec
1
L

XL
l¼1

TlRnc l½ �TT
l

!

¼ 1
L

XL
l¼1

Tl�Tlð Þ A θ;lð Þ�A θ;lð Þð Þγnc l½ �

¼ 1
L

XL
l¼1

TlA θ;lð Þ�TlA θ;lð Þ½ �γnc l½ �≈Anc θ;lrð Þγnc,

ð17Þ

where γc and γnc are vectors consisting of the average
power of all frequency bins, that is,

γc ¼
1
L

XL
l¼1

γc l½ � ¼ γc 11ð Þ, � � �, γc kPkð Þ, � � �, γc KPKð Þ½ �T,

γnc ¼
1
L

XL
l¼1

γnc l½ � ¼ γnc 11ð Þ, � � �, γnc kPkð Þ, � � �, γnc KPKð Þ½ �T:

ð18Þ

σ2 is the average variance of noise across the whole band.
The observation vectors can be expressed as

yrc ¼ JAc θ, lrð Þγc,
yrnc ¼Anc θ, lrð Þγnc:

ð19Þ

The sparse reconstruction problems are

min γ ∘
c

�� ��
0 s:t: yrc ¼ JAc

eθ, lr� �
γ ∘
c ,

min γ ∘
nc

�� ��
0 s:t: yrnc ¼Anc

eθ, lr� �
γ ∘
nc,

ð20Þ

where γ ∘
c and γ ∘

nc denote the average power related to the
grids. The dictionary’s dimension is greatly reduced in
comparison to the MMV model of all frequency bins. The
over complete dictionaries are JAcðeθ, lrÞ and Ancðeθ, lrÞ,
and the related derivative matrices are JA0

cðeθ, lrÞ and
A0

ncðeθ, lrÞ. Denote α ∘
c ¼α ∘γ ∘

c , γ ∘
r ¼ γr 1ð Þ, …, γr Kg

	 
� �T
,

and Υ ¼ γ ∘
r ,γ ∘

c ,γ ∘
nc,α ∘

c

� �
. To combine the angle informa-

tion contained in both the covariance matrix and the
pseudo covariance matrix, (20) can be transformed as a
convex problem:

min
γ ∘
r ,γ

∘
c ,γ

∘
nc,α ∘

c

Υk k2,1

s:t: γr kg
	 


≥ γc kg
	 


,γnc kg
	 
� ��� ��

2

yrc�JAc
eθ, lr� �

γ ∘
c �A0

nc
eθ, lr� �

α ∘
c

��� ���
2
≤ εc

yrnc�Anc
eθ, lr� �

γ ∘
nc

��� ���
2
≤ εnc

� r
2
γ ∘
c ≺

̱
α ∘
c ≺

̱ r
2
γ ∘
c

, ð21Þ

where Υk k2,1 ¼
PKg

k¼1 Υ k, :ð Þk k2. Taking advantage of the
joint sparsity between γ ∘

r , γ ∘
c , γ ∘

nc, and α ∘
c , the DOA infor-

mation from the covariance matrix and the pseudo
covariance matrix is aligned γ ∘

r . The error bound εc εnc
directly affects the accuracy of the result; thus, the
thresholds should be determined before solving the prob-
lem. Assuming that bRrc_m1,m2 and bRrnc_m1,m2 are the ele-
ments of m1th row and m2th column in bRrc and bRrnc,
respectively, the error can be formulated as
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εc ≈ μc �M M�1ð Þ
Q

XK
k¼1

XPk

i¼1

γ2c kið Þþ γ2nc kið Þ	 
þ"

M M�1ð Þ
Q

σ2þ
XK
k¼1

XPk

i¼1

γc kið Þ
!2

þ 1
Q

XM
m1¼1

XM
m2¼ 1
m2 ≠m1

bRrncm1 ,m2

��� ���2#

εnc ≈ μnc
M Mþ1ð Þ

Q
σ2þ

XK
k¼1

XPk

i¼1

γc kið Þ
!2

þ
"

1
Q

XM
m1¼1

XM
m2 ¼ 1
m2 ≠m1

bRrc_m1,m2

��� ���2�2M2

Q

XK
k¼1

XPk

i¼1

γ2c kið Þ
#1

2

,

ð22Þ

where μc and μnc are the empirical weight parameters;
the detailed derivation can be found in Appendix A. In

practice, σ2þPK
k¼1

PPk
i¼1γc kið Þ can be estimated by

diagonal elements of bRrc.
PK

k¼1

PPk
i¼1γ

2
c kið Þ andPK

k¼1

PPk
i¼1γ

2
nc kið Þ can be calculated by the average of the

square sum of the entries in yrck k22 and yrnck k22,
respectively.

4 | SIMULATION RESULTS

Simulation results are presented in this section to demon-
strate the proposed algorithm’s performance. The same
computer, with an AMD R7-4800H CPU and 16 GB of
RAM, is used to simulate all of the results, which is run-
ning MATLAB R2020a on a 64-bit Windows 10 system.
The proposed algorithm is compared to almost all the
DOA estimation methods for wideband noncircular sig-
nals, including EAIP [32], EARR [33], APM [34], and
WBNC [35]. The standard off-grid method based on
sparse Bayesian inference [36] and the sparse Bayesian
learning off-grid DOA estimation with Gaussian mixture
priors [10] are also compared. It is worth noting that
these two narrowband DOA estimators can only be used
on individual frequency bins of wideband signals. For the
sake of fairness, the step size is set as 1 ∘ within
�90 ∘ ,90 ∘ð Þ for off-grid methods and 0:1 ∘ the other
subspace-based algorithms.

In the first case, two groups of four off-grid BPSK
wideband signals impinge onto the six elements
minimum-redundancy linear array [37] located at
0, d, 2d, 6d, 10d, 13dð Þ from �42:5 ∘ ,�21:2 ∘ð Þ and
20:3 ∘ ,25:8 ∘ð Þ. The LOS signal is the first in each group,
followed by the multipath signal. The noncircularity
phase of two LOS signals is 50 ∘ and 70 ∘ . The multipath
propagation delays ι12 ¼Tc, ι22 ¼ 1:2Tc and the attenua-
tion factors ρ12 ¼ 0:8e j57:2

∘
, ρ22 ¼ 0:9e j82:3

∘
, where Tc is

the correlation time. The element spacing d equals the
half wavelength at the highest frequency. The carrier fre-
quency is 2GHz, and the bandwidth is 400MHz, which
is 20% of the center frequency. The sampling frequency
is 5GHz. SNR¼ 0 dB, the number of snapshots N ¼ 5000,
the number of subbands L¼ 50, and the number of seg-
ments Q¼N=L. The scanning angle range is set as the
prediction angle range of the focusing operation in
FOGWNC. Figure 1. depicts the results. Existing
subspace-based algorithms and the SBL-based off-grid
methods produce far more false peaks than the proposed
algorithm.

F I GURE 1 Spatial spectra of the compared methods

F I GURE 2 RMSE. (A) RMSE versus SNR for noncircular

signals. (B) RMSE versus the number of snapshots for noncircular

signals
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In the second case, the root-mean-square error
(RMSE) of the above algorithms is compared for noncir-
cular wideband DOA estimation. The RMSE can be
defined as

RMSEθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KncT

XT
n¼1

XKnc

k¼1

XPk

i¼1

bθki,n�θ
� �2vuut : ð23Þ

A group of two off-grid BPSK wideband signals impinges
onto the four elements minimum-redundancy linear
array located at 0, d, 4d, 6dð Þ from �10:5 ∘ ,13:2 ∘ð Þ. The
noncircularity phase and noncircularity rate of the LOS
signals are 50 ∘ and 1 respectively. The multipath propa-
gation delay is ι12 ¼Tc, and the attenuation factor is
ρ12 ¼ 0:8e j57:2

∘
. Let SNR increase 10 dB gradually to

N ¼ 2000. Other conditions remain unchanged; the
results are shown in Figure 2A. Then, N is changed from
1000 to 5000, and the SNR is 0 dB. Other simulation
parameters remain unchanged; the results are displayed
in Figure 2B. Appendix B contains the CRB for
wideband noncircular DOA estimation. The estimation
accuracy of subspace-based algorithms degrades in low
SNR because multipath delay and attenuation factors

are not taken into account. FOGWNC has the highest
precision for noncircular wideband sources among
these algorithms in the given scenarios, as shown in
Figure 2.

In the third case, the resolution probabilities of the
above algorithms are compared to further illustrate the
performance. A group of two off-grid BPSK wideband
signals incident from 0:1 ∘ ,3:8 ∘ð Þ. Two signals are
resolved if both jbθ11�θ11j and jbθ12�θ12j are smaller 1 ∘.
First, the parameters are the same as that in
Figure 2A; the results are shown in Figure 3A. The
parameters are then the same as in Figure 2B, and the
results are shown in Figure 3B. FOGWNC, followed by
EAIP, has the best resolution probability among these
algorithms, as shown in the results. Other methods
cannot tell the difference between two signals that are
too close together.

The computational cost of FOGWNC is considered in
the last case. The convex optimization problems in the
proposed algorithm can be solved by the CVX tool-
box [38], and the main complexities of FOGWNC are
O
	
K3

g



. Figure 4 depicts the CPU time of the simulations

in Figure 2B. The results show that FOGWNC takes lon-
ger to run than other algorithms but is much faster
than WBNC.

5 | CONCLUSIONS

The off-grid-based algorithms for wideband noncircular
DOA estimation were investigated in this paper. A
novel algorithm called FOGWNC is developed using
the focused operation. The presented algorithm outper-
forms existing noncircular wideband DOA estimators in
low SNR, has the best resolution ability, and has the
highest estimation accuracy, according to simulation
results. This paper contributes to the advancement of SR
theory’s application in noncircular wideband DOA
estimation.

F I GURE 3 Resolution probability. (A) Resolution probability

versus SNR for noncircular signals. (B) Resolution probability

versus the number of snapshots for noncircular signals

F I GURE 4 Cost time versus the number of snapshots
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APPENDIX A: DERIVATION OF THE ERROR
BOUND

Denote am,ki and nm as the mth elements of a ki, lrð Þ and
N lr,q½ �, respectively. xki,q is a simple expression for kith
entry in X lr,q½ �. We have

It is obvious that the first terms of bRrc_m1,m2 andbRrnc_m1,m2 are the signal component and the other three
terms are the perturbation, that is,

βcm1 ,m2
¼ βcm1 ,m2

1ð Þþβcm1 ,m2
2ð Þþβcm1 ,m2

3ð Þ,
βnc_m1,m2

¼ βnc_m1,m2
1ð Þþβnc_m1,m2

2ð Þþβnc_m1,m2
3ð Þ:
ð26Þ

Taking advantage of the independence between signal
and noise, the variances of perturbation can be deduced
as

E βcm1 ,m2
β�cm1 ,m2

n o
¼
X3

n¼1
E βcm1 ,m2

nð Þβ�cm1 ,m2
nð Þ

n o
¼ 1
Q

(
σ4þ2σ2

XK
k¼1

XPk

i¼1

γc kið Þþ
XK
k1¼1

XK
k2¼1

XPk1

i1¼1

XPk2

i2¼1

γc k1i1ð Þ
k2i2 ≠ k1i1

γc k2i2ð Þ

þ
XK
k1¼1

XK
k2¼1

XPk1

i1¼1

XPk2

i2¼1

am1,k1i1

k2i2 ≠ k1i1

a�m2,k1i1a
�
m1,k2i2am2,k2i2γnc k1i1ð Þγ�nc k2i2ð Þ

)
,

ð27Þ

bRrc_m1,m2 ¼
1
Q

XQ
q¼1

XK
k¼1

XPk

i¼1

am1,kixki,qþnm1

! XK
k¼1

XPk

i¼1

a�m2,kix
�
ki,qþ n�

m2

!

¼ 1
Q

XK
k¼1

XPk

i¼1

XQ
q¼1

x2ki,q

 !
am1,kia

�
m2,ki

þ 1
Q

XQ
q¼1

nm1n
�
m2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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þ 1
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Then, the mean square value of the covariance
observation vector with the reference frequency bin can
be formulated as

E βnc_m1,m2
β�nc_m1,m2

n o
¼
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n¼1
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The error can be set as

εc ¼ μc E βck k22
� �� �1

2,εnc ¼ μnc E βnck k22
� �� �1

2: ð31Þ

APPENDIX B: CRAMER–RAO BOUND OF
WIDEBAND NONCIRCULAR DOA ESTIMATION

Denote the Kþ3KLþL dimensional unknown parame-
ter vector:

ξ¼ θT,�γTc ,�γ
T
nc,σ

T
� �T

, ð32Þ

where

�γc ¼ γTc 1½ �,γTc 2½ �,…,γTc L½ �� �T
�γnc ¼ R γTnc 1½ �	 


,I γTnc 1½ �	 

,…,R γTnc L½ �	 


,I γTnc L½ �	 
� �T
σ¼ σ21,σ

2
2,…,σ2L

� �T
:

ð33Þ

Unlike the circular signals, the pseudo covariance matrix
also contains information about directions and power.

The augmented covariance matrix of each frequency bin
can be formulated as

�R l½ � ¼ Rc l½ � Rnc l½ �
R�

nc l½ � R�
c l½ �

� �
: ð34Þ

According to the Slepian–Bangs formula for noncircular
sources [39], the element at ith row and jth column of
the Fisher information matrix (FIM) can be denoted as

FIMi,j ¼Q
2

XL

l¼1
�R
T
l½ �O �R l½ �

� ��1
2 ∂�r lð Þ
∂ξi

� �H

� �R
T
l½ �O �R l½ �

� ��1
2 ∂�r lð Þ
∂ξj

( )
,

ð35Þ

where �r l½ � ¼ vec �R l½ �	 

. It is difficult to directly calculate

the derivative of �r l½ �, and the vectorization of each part of
�R l½ � may be separated �r l½ � to facilitate the derivation.
Define a 4M2	4M2 dimensional permutation matrix as

Ξ¼ I2
O XM

m¼1

X2

i¼1
Fm,j

O
FT
m,j

� �O
IM

h i
, ð36Þ

E βnck k22
� �

¼
XM
m1¼1

XM
m2¼1

E βncm1 ,m2
β�ncm1 ,m2

n o

¼M2

Q

" 
σ4 1þδ m1�m2ð Þð Þþ

XK
k1¼1

XK
k2¼1

XPk1

i1¼1

XPk2

i2¼1

γc k1i1ð Þ
k2i2 ≠ k1i1

γc k2i2ð Þþ2σ2 1þδ m1�m2ð Þð Þ
XK
k¼1

XPk

i¼1

γc kið Þ
#

þ 1
Q

XK
k1¼1

XK
k2¼1

XPk1

i1¼1

XPk2

i2¼1

am1,k1i1

k2i2 ≠ k1i1

a�m2,k1i1a
�
m1,k2i2am2,k2i2γnc k1i1ð Þγ�nc k2i2ð Þ

¼M Mþ1ð Þ
Q

σ2þ
XK
k¼1

XPk

i¼1

γc kið Þ
!2

�M2

Q

XK
k¼1

XPk

i¼1

γ2c kið Þ

�M
Q

XK
k¼1

XPk

i¼1

γc kið Þ
!2

þ 1
Q

XM
m1¼1

XM
m2¼1

Rrcm1 ,m2

��� ���2�M2

Q

XK
k¼1

XPk

i¼1

γ2c kið Þ

¼M Mþ1ð Þ
Q

σ2þ
XK
k¼1

XPk

i¼1

γc kið Þ
 !2

�2M2

Q

XK
k¼1

XPk

i¼1

γ2c kið Þþ 1
Q

XM
m1¼1

XM
m2 ¼ 1

m2 ≠m1

Rrc_m1,m2j j2:

ð30Þ
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where Fm,j is a M	2 dimensional matrix, the element at
ith row and jth column of Fm,j is 1, and the other
elements are 0. Denote rc l½ � ¼ vec Rc l½ �ð Þ and
rnc l½ � ¼ vec Rnc l½ �ð Þ, �r l½ � can be rewritten as

�r l½ � ¼Ξ rTc l½ �,rHnc l½ �,rTnc l½ �,rHc l½ �� �T
: ð37Þ

The derivatives of rc l½ � and rnc l½ � can be formulated as

∂rc l½ �
∂θT

¼A0
c l½ �diag γc l½ �ð Þ, ∂rc l½ �

∂�γTnc
¼OM2	KL

∂rc l½ �
∂�γTc

¼ OM2	K ,…, Ac l½ �|ffl{zffl}
the lth block

,…,OM2	K

264
375

∂rc l½ �
∂σT

¼ OM2	1,…, iM2|{z}
the lth block

,…,OM2	1

264
375

∂rnc l½ �
∂θT

¼A0
nc l½ �diag γnc l½ �ð Þ, ∂rnc l½ �

∂�γTc
¼OM2	KL,

∂rnc l½ �
∂�γTnc

¼ OM2	2K ,…, Anc l½ �Ψ|fflfflfflffl{zfflfflfflffl}
the lth block

,…,OM2	2K

264
375, ∂rnc l½ �

∂σT
¼OM2	L,

ð38Þ

The definition of Ac l½ �, Anc l½ �,A0
c l½ �, and A0

nc l½ � can be

found in (8) and (13), γTnc l½ � ¼Ψ R γTnc l½ �
	 


,I γTnc l½ �
	 
� �T

Let

Wl ¼ �R
T
l½ �N �R l½ �

� ��1
2
, the FIM can be transformed as

FIM¼Q
2

GH
θ Gθ GH

θ Gp

GH
p Gθ GH

p Gp

" #
, ð39Þ

where

Gθ ¼fW IL
N

Ξð ÞeDθ,Gp ¼fW IL
N

Ξð ÞeDp

fW¼ blkdiag W1,W2,…,WLð Þ

eDθ ¼ DT
θ 1½ �,DT

θ 2½ �,…,DT
θ L½ �� �T

, eDp ¼ eDc, eDnc, eDσ

h i

Dθ l½ � ¼ ∂rc l½ �
∂θT

� �T
, ∂r�nc l½ �

∂θT

� �T
, ∂rnc l½ �

∂θT

� �T
, ∂r�c l½ �

∂θT

� �T� �T
eDc ¼ DT

c 1½ �,DT
c 2½ �,…,DT

c L½ �� �T
Dc l½ � ¼ ∂rc l½ �

∂�γTc

� �T
, ∂r�nc l½ �

∂�γTc

� �T
, ∂rnc l½ �

∂�γTc

� �T
, ∂r�c l½ �

∂�γTc

� �T� �T
eDnc ¼ DT

nc 1½ �,DT
nc 2½ �,…,DT

nc L½ �� �T
Dnc l½ � ¼ ∂rc l½ �

∂�γTnc

� �T
, ∂r�nc l½ �

∂�γTnc

� �T
, ∂rnc l½ �

∂�γTnc

� �T
, ∂r�c l½ �

∂�γTnc

� �T� �T
eDσ ¼ DT

σ 1½ �,DT
σ 2½ �,…,DT

σ L½ �� �T
Dσ l½ � ¼ ∂rc l½ �

∂σT

� �T

,
∂r�nc l½ �
∂σT

� �T

,
∂rnc l½ �
∂σT

� �T

,
∂r�c l½ �
∂σT

� �T
" #T

ð40Þ

Using the matrix inversion lemma, the CRB matrix can
be formulated as

CRB θð Þ¼ 2
Q

GH
θ Π

⊥
Gp
Gθ

� ��1
, ð41Þ

where

Π ⊥
Gp

¼ I4M2L�Gp GH
p Gp

� ��1
GH

p : ð42Þ
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