DOI QR코드

DOI QR Code

Error analysis of acoustic target detection and localization using Cramer Rao lower bound

크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석

  • 박지성 (한국해양과학기술원 해양방위연구센터) ;
  • 조성호 (한국해양과학기술원 해양방위연구센터) ;
  • 강돈혁 (한국해양과학기술원 해양방위연구센터)
  • Received : 2017.03.31
  • Accepted : 2017.05.30
  • Published : 2017.05.31

Abstract

In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

본 논문에서는 배열센서에서 DOA(Direction Of Arrival)를 수행하는 경우 크래머 라오 하한을 이용하여 표적신호가 수신되는 방위오차의 최소분산을 계산하고, 탐지 방위오차 및 위치추정 거리오차를 추정하는 방안을 제시한다. 신호 대 잡음비는 DOA의 정확도 즉, 표적의 탐지 방위오차 및 위치추정 거리오차를 결정한다. 일반적으로 신호대 잡음비는 음원준위, 소음준위, 전달손실, 배열센서의 형상, 빔 조향 방위에 따라 달라진다. 표적의 공간상 상대적 위치와 소음준위가 달라지는 경우, 신호 대 잡음비의 변화에 따른 탐지 방위오차 및 위치추정 거리오차를 확률적으로 추정하는 몬테카를로 시뮬레이션을 수행함으로써, 제안된 방법을 검증하였다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound, 3rd edition (McGraw-Hill, Washington D. C, 1983), pp. 31-46.
  2. W. S. Burdic, Underwater Acoustic System Analysis (Prentice-Hall, New Jersey, 1984), pp. 322-360.
  3. J. S. Park, Y. W. Choi, J. S. Kim, S. Cho, and J. S. Park, "Array gain estimated by spatial coherence in noise fields" (in Korean), J. Acoust. Soc. Kr. 35, 427-435 (2016). https://doi.org/10.7776/ASK.2016.35.6.427
  4. M. W. Zynwalt, A. J. Korsakm, and R. S. Ratner, "Appendix a standard antisubmarine warfare measures of effectiveness and measures of performance," PEO (MUW) INST. 3370.1, Tech. Rep., 2000.
  5. D. P. Kierstead and D. R. DelBalzo, "A genetic algorithm applied to planning search paths in complicated environments," Military Operations Research Soc. 8, 45-59 (2003). https://doi.org/10.5711/morj.8.2.45
  6. J. H. Cho, J. S. Kim, J.-S. Lim, S. Kim, and Y.-S. Kim, "Optimal acoustic search path planning based on genetic algorithm in continuous path system," in Proc. OCEANS," 2006 IEEE Asia Pacific-Singapore, 116-117 (2006).
  7. J. H. Cho, J. S. Kim, J.-S. Lim, S. Kim, and Y.-S. Kim, "Optimal acoustic search path planning for sonar system based on genetic algorithm," International Journal of Offshore and Polar Engineering 17, 218-224 (2007).
  8. J. -H. Cho, J. S. Kim, J. -S. Lim, and J. -S. Park, "Measure of effectiveness for detection and cumulative detection probability" (in Korean), J. KIMST 15, 601-614 (2012).
  9. J. -H. Cho, H. R. Kim, S. Kim, and J. S. Kim, "Measure of effectiveness analysis for tracking in SONAR system" (in Korean), J. KIMST 16, 5-26 (2013).
  10. J. -S. Park, J. -S. Kim, J. -H. Cho, H. -R. Kim, and K. -C. Shin, "Measure of effectiveness analysis of active SONAR for detection" (in Korean), J. KIMST 16, 1-12 (2013).
  11. R. Roy, A. Paulraj, and T. Kailath, "ESPRIT - A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust. Speech, Signal Processing 34, 1340-1342 (1986). https://doi.org/10.1109/TASSP.1986.1164935
  12. R. Roy, B. Ottersten, L. Swindlehurst, and T. Kailath, "Multiple invariance ESPRIT," in Proc. 22nd Asilomar Conf. Signals, Syst. Comput. Asilomar, CA, 583-587 (1988).
  13. R. Roy and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 984-995 (1989). https://doi.org/10.1109/29.32276
  14. R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation 34, 276-280 (1986). https://doi.org/10.1109/TAP.1986.1143830
  15. B. D. Rao and K. V. S. Hari, "Performance analysis of root-MUSIC," IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 1939-1949 (1989). https://doi.org/10.1109/29.45540
  16. D. Zeyang and D. Yuming, "DOA Estimation based on improved MUSIC algorithm," in Proc. 2009 Conference on Communication Faculty, 481-485 (2009).
  17. A. Dhar, A. Senapati, and J. S. Roy, "Direction of arrival estimation in smart antenna using MUSIC and improved MUSIC algorithms at noisy environment," International Journal of Microwaves Applications 5, 1-6 (2016).
  18. T. Orul and E. Afacan, "Estimation of direction of arrival algorithms," in Proc. PIERS Proceedings, Stockholm, Sweden, 1346-1351 (2013).
  19. P. Palanisamy and N. Rao, "Direction of arrival estimation based on fourth-order cumulant using propagator method," Progress In Electromagnetics Research B 18, 83-99 (2009).
  20. J. Kim, C. Cho and C. Lee, "A gradient method based near-field range estimation technique robust to Directionof-Arrival Error" (in Korean), The Institute of Electronics and Information Engineers 49, 130-136 (2012).
  21. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, New Jersey, 1993), pp. 27-77.
  22. J. Shao, Mathematical Statics (Springer, New York, 2003), pp. 1-90.
  23. C. A. Balanis, "Uniform circular and rectangular arrays for adaptive beamforming applications," IEEE Antennas and Wireless Propagation 4, 351-354 (2005). https://doi.org/10.1109/LAWP.2005.857039
  24. V. Rabinovich and N. Alexandrov, Antenna Arrays and Automotive Applications (Springer, NewYork, 2013), pp.23-52.
  25. R. O. Nielsen, "Estimation of azimuth and elevation angles for a plane wave sine wave with a 3-D array," IEEE Transactions on Signal Processing, 42, 3274-3276, 1994. https://doi.org/10.1109/78.330396