• Title/Summary/Keyword: Range prediction

Search Result 1,574, Processing Time 0.026 seconds

Prediction Model on Electrical Conductivity of High Density Metallic Plasma (고밀도 금속 플라즈마 전기전도도 예측모델)

  • Kyoungjin Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2022
  • This study introduces the calculation model of ionization composition and electrical conductivity for metallic plasma for practical application to modeling and simulation of modern electrical detonators. The present model includes the correction for non-ideality of dense plasma conditions which are expected in electrical explosion of bridge in detonators. The computational results for copper plasma show favorable agreement with experimental data for a wide range of plasma temperature and high density conditions and the model is proper for detonator modeling with good prediction accuracy.

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.

Intersection Collision Situation Simulation of Automated Vehicle Considering Sensor Range (센서 범위를 고려한 자율주행자동차 교차로 충돌 상황 시뮬레이션)

  • Lee, Jangu;Lee, Myungsu;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.114-122
    • /
    • 2021
  • In this paper, an automated vehicle intersection collision accident was analyzed through simulation. Recently, the more automated vehicles are distributed, the more accidents related to automated vehicles occur. Accidents may show different trends depending on the sensor characteristics of the automated vehicle and the performance of the accident prevention system. Based on NASS-CDS (National Automotive Sampling System-Crashworthiness Data System) and TAAS (Traffic Accident Analysis System), four scenarios are derived and simulations are performed. Automated vehicles are applied with a virtual system consisting of an autonomous emergency braking system and algorithms that predict the route and avoid collisions. The simulations are conducted by changing the sensor angle, vehicle speed, the range of the sensor and vehicle speed range. A range of variables considered vehicle collision were derived from the simulation.

A Fast Inter Prediction Encoding Technique for Real-time Compression of H.264/AVC (H.264/AVC의 실시간 압축을 위한 고속 인터 예측 부호화 기술)

  • Kim, Young-Hyun;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1077-1084
    • /
    • 2006
  • This paper proposed a fast algorithm to reduce the amount of calculation for inter prediction which takes a great deal of the operational time in H.264/AVC. This algorithm decides a search range according to the direction of predicted motion vector, and then performs an adaptive spiral search for the candidates with JM(Joint Model) FME(Fast Motion Estimation) which employs the rate-distortion optimization(RDO) method. Simultaneously, it decides a threshold cost value for each of the variable block sizes and performs the motion estimation for the variable search ranges with the threshold. These activities reduce the great amount of the complexity in inter prediction encoding. Experimental results by applying the proposed method .to various video sequences showed that the process time was decreased up to 80% comparing to the previous prediction methods. The degradation of video quality was only from 0.05dB to 0.19dB and the compression ratio decreased as small as 0.58% in average. Therefore, we are sure that the proposed method is an efficient method for the fast inter prediction.

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method (경사하강법을 이용한 낸드 플래시 메모리기반 저장 장치의 고효율 수명 예측 및 예외처리 방법)

  • Lee, Hyun-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.44-50
    • /
    • 2021
  • Recently, enterprise storage systems that require large-capacity storage devices to accommodate big data have used large-capacity flash memory-based storage devices with high density compared to cost and size. This paper proposes a high-efficiency life prediction method with slope descent to maximize the life of flash memory media that directly affects the reliability and usability of large enterprise storage devices. To this end, this paper proposes the structure of a matrix for storing metadata for learning the frequency of defects and proposes a cost model using metadata. It also proposes a life expectancy prediction policy in exceptional situations when defects outside the learned range occur. Lastly, it was verified through simulation that a method proposed by this paper can maximize its life compared to a life prediction method based on the fixed number of times and the life prediction method based on the remaining ratio of spare blocks, which has been used to predict the life of flash memory.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF

Verification and Comparison of Forecast Skill between Global Seasonal Forecasting System Version 5 and Unified Model during 2014 (2014년 계절예측시스템과 중기예측모델의 예측성능 비교 및 검증)

  • Lee, Sang-Min;Kang, Hyun-Suk;Kim, Yeon-Hee;Byun, Young-Hwa;Cho, ChunHo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The comparison of prediction errors in geopotential height, temperature, and precipitation forecasts is made quantitatively to evaluate medium-range forecast skills between Global Seasonal Forecasting System version 5 (GloSea5) and Unified Model (UM) in operation by Korea Meteorological Administration during 2014. In addition, the performances in prediction of sea surface temperature anomaly in NINO3.4 region, Madden and Julian Oscillation (MJO) index, and tropical storms in western north Pacific are evaluated. The result of evaluations appears that the forecast skill of UM with lower values of root-mean square error is generally superior to GloSea5 during forecast periods (0 to 12 days). The forecast error tends to increase rapidly in GloSea5 during the first half of the forecast period, and then it shows down so that the skill difference between UM and GloSea5 becomes negligible as the forecast time increases. Precipitation forecast of GloSea5 is not as bad as expected and the skill is comparable to that of UM during 10-day forecasts. Especially, in predictions of sea surface temperature in NINO3.4 region, MJO index, and tropical storms in western Pacific, GloSea5 shows similar or better performance than UM. Throughout comparison of forecast skills for main meteorological elements and weather extremes during medium-range, the effects of initial and model errors in atmosphere-ocean coupled model are verified and it is suggested that GloSea5 is useful system for not only seasonal forecasts but also short- and medium-range forecasts.

Prediction of the ventilation performance in a kitchen with various locations of gas range and window (가스렌지와 창문위치에 따른 주방 배기성능 예측)

  • 김경환;이재헌;박명식;이대우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2000
  • This paper presents the predicted results by CFD technique of air flow and contaminant distribution in a full-scale kitchen opened to a living room, ventilated by a exhaust hood. To analyze the characteristics of the indoor environment, the concept of contaminant index was defined. In this study, the locations of the gas range and the window were chosen as the parameters to investigate the indoor environment. The values of the contaminant index for several layout of the gas range and the window were calculated and compared. When the gas range is installed along the wall with specified window location, its position in relation to the wall has unnoticed effect on contaminant infer. Once the location of the gas range is fixed, the indoor air quality may deteriorate by the proximity of the window to the gas range. This is due to the shorter distance that external fresh air must travel within the kitchen before it reaches the exhaust fan.

  • PDF