
1. Introduction

As climate change causes sea levels to rise, which increases the 
external forces of high waves, shoreline deformation with coastal 
erosion and scour has received significant attention, becoming an 
important social issue in many countries. In particular, morphological 
changes in seabed due to such coastal erosion and sedimentation can 
cause changes in the coastal environment and ecosystems. Various 
deformation methods have been proposed to recover coastal erosion 
issues, but commercially utilized gravity-type structures such as 
breakwaters and headlands change the sea environment, resulting in 
bad seawater circulation and poor water quality. Low-crested and 
submerged structures (LCS), such as detached breakwater and 
artificial reefs, diminish the wave height with reduced wave energy 
behind a structure due to the change in the freeboard at the still water 
surface, which protects the inland sea environment. The construction 

of LCS is performed under specific conditions to produce the desired 
wave transmission coefficient; thus, the calculation or prediction of the 
transmission coefficient of the structure should be carried out as an 
important factor in designing the structure. To determine the wave 
transmission coefficient of LCS, various studies have proposed 
formulas for calculating the wave transmission rate, but the wave 
transmission coefficients are estimated through a regression analysis 
of mathematical experimental data, showing a limited analysis of the 
natural phenomena (Koosheh et al., 2020; Formentin et al., 2017). 
Recently, a machine learning model has been used to estimate and 
predict statistical structures from input and output data. This machine 
learning model can readily explain the regression analysis of nonlinear 
relationships (Hashemi et al., 2010; Rigos et al., 2016). Machine- 
learning-based prediction models employ deep learning algorithms of 
neural networks, which have been continuously applied in the field of 
coastal engineering in recent years, especially for solving problems 
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related to modeling behavior around coastal structures (Shamshirband 
et al., 2020; Kim et al., 2005; Formentin et al., 2017; Panizzo and 
Briganti, 2007).

Herein, we introduced a prediction trend of the wave attenuation 
characteristics of LCS to propose an explicit method composed of 
weights and biases using artificial neural network. To estimate 
dominant factors for the wave transmission rate of LCS, we applied 
machine learning models to predict the wave height transmission rate 
of LCS dependent on 7 types of dimentionless characters with 
sensitivity analysis. In addition, we proposed an optimized machine 
learning model suitable for the determination of wave transmission 
coefficient and performs an overall analysis of the model with various 
combination. Finally, we carried out the evaluation of the applicability 
of the machine learning model through the analysis of the accuracy 
associated with the formulas for calculating the wave height 
transmission rate of the existing LCS. We found that the estimated 
wave attenuation characteristics calculated with the presented weight 
and bias matrix shows better accurate reliability compared with those 
obtained from the broadly used empirical formula.

2. Background

2.1 Analysis of Transmission Coefficient Empirical Formulas
Among various studies, Takayama et al.(1985) proposed the Eq. (1) 

to determine the wave transmission coefficient for LCS based on 
empirical experiment using irregular wave as follows:

 

 ′
 

′  (1)

where B is the crown width,   is the crown freeboard,   is deep sea 
wave length , ′ is calculated wave height of deep sea. When the 
relative width of structure increases over a certain value, the value of 
wave transmission coefficient at   > 0.7 is defined as a negative 
value based on the result of Takayama et al.‘s(1985) experiment, 
which was determined using a small with of structure (< 0.4) (Lee 
and Bae, 2020). Thus, it is suitable for an experiment with a short wave 
period length. In DELOS (Environmental Design of Low Crested 
Coastal Defence Structures, EVK3-CT-2000-00041) project, more 
than 2300 two-dimensional experiments were performed to determine 
the wave transmission coefficient for LCS. Van der Meer et al. (2005) 
proposed the experimental formula to estimate the wave transmission 
coefficient using converted dimensionless variables of relative 
freeboard ( ), relative crest width ( ), surf similarity 
parameter ( tan ) obtained from DELOS as follows:

 

    (2)

 

 

 
 

   (3)

where tan is breakwater slope and effective range of wave 
transmission coefficient is determined between 0.075 and 0.8. 

Goda and Ahrens (2009) proposed the formula of wave transmission 
coefficient for LCS as follows.

  max exp











 (4)

 exp



ln

 



 (5)


     

max min 
 


(6)

where  is dimensionless limit wave run-up height,  is the 
effective diameter of the materials composed of LCS. 

  
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


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

















(7)

Herein, is effective crest width at still water level,  is the 
width of structure at still water level,  is the crest width of structure, 
 is the width at the bottom of structure. 

Calabrese et al. (2003) used the large-scale experimental data to 
determine the wave transmission coefficient.

  


 (8)

  ×

  (9)

 exp (10)

 ×

  (11)

  ×


 (12)

2.2 Artificial Neural Network
Artificial neural network (ANN) is modeling systems that provides a 

data process structure inspired by the neural networks of human brains, 
which are composed of a web of millions of interconnected neurons. A 
neuron is a special biological cell that conveys information from one 
neuron to others. ANN is composed of a large number of simple 
processing elements interconnected with each other. The system 
requires the involvement of a labeled direct graph structure where 
nodes conduct computations. The “directed graph” provides a set of 
“nodes” (vertices) and a set of “connections” (edges/links/arcs) to 
connect pairs of nodes. In a neural network, each node performs 
simple computations, and each connection delivers a signal from one 
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node to another, labeled by a number called the “connection strength” 
or “weight”, which implies the extent to which a signal is amplified or 
diminished by connection, as shown in Fig. 1.

In the ANN data process, the result values are derived by 
substituting the normalized input variable into the function of Eq. (13) 
at each node.


 

  




 (13)

where  is weight),  is Bias,  is input value.

2.2.1 Activation function
The activation function provides the explanation of non-linearity by 

substituting the estimated input data in each node into a function that 
creates non-linearity and then outputs the results. Different kinds of 
functions, such as linear, exponential, sigmoid, tanh, rectified linear 

unit (ReLU), softmax, scaled exponential linear unit (SeLU), and 
expoenetial linear unit (elU) are utilized for the activation function. 
The mean squared error of the various functions where six different 
activation functions are described to the hidden layer and output layer 
as shown in Fig. 2.

2.2.2 Gradient decent method
In general, the error back propagation method is used as an 

optimization algorithm for parameter estimation, which re-updates any 
parameter to the one with the lowest error. The period in which each 
parameter is updated once is called the weight adjustment period 
(epoch). Here, the error backpropagation refers to the process of 
minimizing the error by re-correcting the weight while going 
backwards the result of the sum of the errors of each neuron. For the 
optimization of the loss function, the gradient descent method was 
developed by re-updating the weights to find the lowest point of the 
lost value. The existing gradient descent method can accurately derive 

(a) (b) (c) 

(d) (e) (f) 
Fig. 2 Type of activation functions: (a) Sigmoid type; (b) Tanh type; (c) ReLU type; (d) Exponential type; (e) eLU type; (f) Softmax type

Fig. 1 Neural network diagram of element
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weights, but it has a disadvantage in that the amount of calculation is 
very large because it must be differentiated over the entire data 
instantaneously whenever the weights are changed. That is, the speed 
may decrease due to the load caused by a large amount of computation, 
and learning may be stopped before additionally finding the optimal 
solution. To compensate for this problem, various advanced gradient 
descent techniques have been developed. Advanced gradient descent 
techniques include stochastic gradient descent (SGD), momentum, 
Nesterov accelerated gradient, Adagrad, and root mean square 
propagation (RMSProp), Adam, etc., and in this study, the 
optimization process using Adam was performed. Adam is a gradient 
descent method that combines Momentum and RMSprop techniques, 
and uses the exponential average of the squares of the slopes of the 
RMSprop technique. is as follows (Eqs. (14)–(16)).

(1) Stochastic gradient descent (SGD)
The stochastic gradient descent method consists of a set of 

parameters to be updated through the calculation of the change rate of 
the loss function () and the learning rate () shown in Eq. (14).

      

  (14)

Here,  is a weight,  is a learning rate,  is an error, and is a method 
of updating weights according to a constant learning rate () using 
some randomly extracted data.

(2) Adaptive gradient, Adagrad 
In the adaptive gradient method, the learning rate is adjusted 

according to the number of updates of the variable by   when the 
weights are re-updated, and the weights are trained to reach the 
optimal value. It is a method of learning by decreasing the learning rate 
for variables that have changed significantly and increasing the 
learning rate for variables with small changes (Eqs. (15), (16)).

  
 






 (15)

     

 


(16)

Here, for weight update, the learning rate is multiplied by 

 , and 

  is the continuous sum of the squares of the slope of the loss 
function. In addition, in the existing gradient descent method, the 
addition of the squares of the weight gradients causes the learning rate 
to decrease gradually for the weights that have a lot of fluctuations in 
the weight values. However, if Adagrad learns infinitely, at some point 
 becomes too large and the learning rate becomes 0 and learning is 
stopped. That is, it works well for the problem of the cost function 
composed of a simple quadratic equation, but it has a problem that the 

learning rate is too reduced and the learning stops completely before 
reaching the global minimum.

(3) RMSprop
In the complex structure of Adagrad, there is a problem that the 

learning rate becomes 0 before reaching the global minimum. To 
compensate for this, the RMSprop technique was developed (Eqs. 
(17), (18)). This method improved the existing problems by reflecting 
and accumulating the latest slope information using the Decaying 
mean.

     





 (17)


   



 


(18)

Here,  is added to the   parameter, which usually uses a value of 0.9 
as the attenuation rate, and functions to reflect the latest gradient 
information rather than simply accumulating the weight gradient.

(4) AdaDelta (Adaptive delta)
AdaDelta is calculated using the Hessian matrix instead of the 

learning rate to compensate for the problem of small learning rate in 
Adagrad, and is calculated as follows Eqs. (19)–(22).

  
 

∆ (19)

∆ 


 


 (20)


   



 


(21)

     ∆
 (22)

(5) Adam (Adaptive moments)
Adam uses the exponential averaging of the square of the slope of 

the RMSprop technique as a gradient descent method that combines 
the Momentum and RMSprop techniques (Eqs. (23)–(25)).

  
 




  (23)

 





       

 (24)








 

   





 (25)

Here,   is the estimate for the first moment of the gradient,   is the 
estimate for the second moment, and   and   are the correction 
values that correct the deviation of the weights.



Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network 317

3. Methodology

3.1 Experimental Database
It is required to consider various valuables to determine the wave 

transmission characteristics behind the LCS structure. The optimal 
machine learning model was used to figure out the role of variables 
affecting the wave control of LCS using the machine learning analysis 
package. We used the results of previous hydraulic experiment with 
LCS for input data, including deep sea wave length ( ), crest 
freeboard ( ), incident wave height (), crown width (), water 
depth (), structure height (), wave period ( ), similarity 
coefficient for breakwater (tan) and (Seelig, 1980; Daemrich 
and kahle, 1985; van der Meer, 1988; Daemen, 1991) (Table 1). Data 
was obtained from DELOS databased of submerged breakwater 
information.

- 81 data on rubble mound emerged/submerged breakwater [Seelig];
- 95 data on tetrapod submerged breakwater [Daemrich and Kahle];
- 31 data on rubble mound emerged/submerged breakwater [Van der 

Meer];
- 53 data on rubble mound emerged/submerged breakwater [Daemen]

When applying the results of the mathematical model experiment, 
applying a dimensionless factor helps to clarify the problem related to 
the scale effect. Therefore, we applied 7 dimensionless factors as input 
variables as shown in Table 2 in consideration of the above dimension 
factors.

  


 


  










  (26)

where   is the relative freeboard,   is the relative crest width, 
 is the surf similarity parameter,   is the ratio of the crest width to 
the wavelength,  is the ratio of the crest height to the water depth, 


  is the ratio of the nominal diameter to the crest height, and 
 is the relative crest height. To reflect the same degree of feature 
scale, we converted the input variable using max-min normalization.


maxmin

min (27)

3.2 Hyperparameters Tuning and Model Validation
A machine learning model has many hyperparameters that the user 

    tan  

Min Max Min Max Min Max Min Max Min Max Min Max Min Max
Seelig (1980) ‑0.42 0.21 0.30 0.40 0.45 0.85 0.11 0.16 0.38 0.67 0.02 0.18 0.91 3.66
Damrich and Kahle (1985) ‑0.20 0 0.20 1.00 0.50 0.70 0.08 0.08 0.50 0.50 0.02 0.23 1.23 3.27
Van der Meer (1988) ‑0.10 0.13 0.3 0.3 0.4 0.4 0.03 0.03 0.5 0.5 0.08 0.23 1.94 2.60
Daemen (1991) ‑0.09 0.20 0.34 0.34 0.27 0.52 0.04 0.06 0.67 0.67 0.03 0.15 0.98 2.88

Table 2 Definitions and ranges of scaled model parameter
Parameter Definition Average Max Min

   Relative freeboard -0.494 4.00 -8.696
  Relative crest width 4.525 43.478 0.889
  Surf similarity parameter 4.145 10.541 1.181
  Ratio of the crest width to wave length 0.09 0.424 0.012
  Ratio of the crest height to the water depth -0.065 0.36 -0.56
 

 Ratio of the nominal diameter to crest height 0.166 0.336 0.065
  Relative crest height 0.935 1.734 0.44
  Transmission coefficient 0.482 0.922 0.049

Table 3 Hyperparameter tuning
Hyper parameter Range of hyperparameter Number of hyperparameter

Hidden layer 1–2 2
Activation function of hidden layer ReLU, Sigmoid, Tanh, Exponential 4

Hidden neuron 7–35 (15) 15
Output layer 1 1

Activation function of output layer Sigmoid, Linear 2
Optimizer SGD, Adadelta, Adagrad, Adam 4

Table 1 Ranges of parameter of reference
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needs to specify. It is used to optimize performance by balancing bias 
and variance of machine learning models. Random search cross- 
validation (CV) and grid search CV are methods for deriving 
hyperparameters suitable for models and data. In this study, the 
optimal parameters for predicting the wave height attenuation 
characteristics of low-rise structures were derived using grid search 
CV. Table 3 shows the parameters and ranges applied to the grid 
search CV, and the parameter with the highest accuracy was derived 
through the calculation of a total of 960 cases.

The purpose of a machine learning model is to predict with high 
accuracy on new data, and to ensure generalization and reliability of 
model performance on new data. Cross-validation is a method to 
improve the generalization performance of a model and is generally a 
more reliable and superior statistical evaluation method than dividing 
the training set and test set once. The most widely used cross-　
validation method is -cross-validation, which was developed to 
minimize the bias associated with random sampling of the training set. 
In this study, 10-fold cross validation was performed, the entire data 
sample was divided into 10, 9 were used for training and 1 was used 
for model validation, and cross-validation was performed 10 times in a 
row (Fig. 3).

3.3 ANN Model Setup 
Table 4 shows ANN model setup. In this study, we utilized the 260 

sets of wave input data with reference to the results of the hydraulic 
model experiment with existing low crest structures. Of the total 260 
data, we used 70% as training data and 30% as prediction data. To set 
up the prediction model of wave properties with high accuracy using 
LCS method, various hyperparameters were determined under 
different conditions, including the activation function, gradient 
descent technique, hidden layer, and overfitting prevention technique, 
to build a model with low error and high accuracy. With respect to the 
activation functions of the hidden layer and the output layer, optimal 

activation functions (ReLU, Sigmoid) were applied using various 
model prediction results. We applied the calculated value to the hidden 
layer’s activation function (ReLU) to explain non-linearity. We 
calculated the result by substituting the hidden layer calculation result 
into the function of output layers and output the result value by 
inputting it into the activation function (Sigmoid) of the output layer. 
To verify the model performance, we applied 10-fold cross-validation 
method that was developed to minimize the bias associated with 
random sampling of the training set. 

The neural network derives an optimal weight and bias where the 
mean squared error (MSE) is minimized through the error 
backpropagation method. In the process of weight redistribution using 
backpropagation algorithm, the increase in the number of hidden 
layers and hidden nodes improves the model’s performance, but 
increases training costs. Thus, this study determined various 

Table 4 Model setup of ANN model

Total data 260
Training set 182

Test set 78
Normalization Max-Min normalization
Input neuron 7
Hidden layer

(Activation function)
1-2

(ReLU)
Hidden neuron 7-35
Output layer

(Activation function)
1

(Sigmoid)
Epoch 10,000

Batch_size 200
Optimizer Adam

Loss Mean squared error
Overfitting prevention Early stopping callback

Fig. 3 10-fold cross validation
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hyperparameters with respect to the number of hidden layers and 
hidden neurons. We analyzed model accuracy ( ) under the 
condition of the 1st–3th layers and 7–35 hidden neurons at 
hyperparameters.

When building a neural network, the optimal training time and 
prediction performance are obtained by varying the number of hidden 
layers and neurons. Fig. 4 reveals the results for the training set and 
the test set for the hidden neuron under the condition of different 
hidden layers, which shows trend lines with   values with respect to 
the number of hidden layers and hidden neurons for training data. It 
represents that the model accuracy increases with the increase in the 
numbers of hidden layers. In addition, value of the training set 
gradually increases as the number of hidden neurons increases. On the 
other hand, the model accuracy of the test set increases as the number 
of hidden layers increases under certain condition (Fig. 5). The 

value (0.979) of the test set showed the highest accuracy under the 
condition of 29 hidden neurons with 2 hidden layers, which suggests 
that the model accuracy of the test set does have a high relationship 
with the accuracy of training set under certain condition. Thus, we 
constructed the model under the optimum condition of 29 hidden 
neurons with 2 hidden layers.

0 5 10 15 20 25 30 35 40
0.90

0.92

0.94

0.96

0.98

1.00

 1 hidden layer
 2 hidden layer
 3 hidden layer

R
2

Number of hidden neurons

Fig. 4 R_squared of training data as a function of the number of 
hidden layer
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Fig. 5 R_squared of test data as a function of the number of 
hidden layer

4. Results and Discussion

4.1 Estimation of Wave Transmission Rate Using Empirical Formula
As shown in Fig. 6, we compared the experimental values of wave 

transmission rate with those obtained from empirical formula. 
Takayama et al. (1985) suggested an estimated wave transmission rate 
that has an MSE of 0.021 and an   value of 0.5, which reveals the 
overestimation of experimental results with a low accuracy (Fig. 6(a)). 
Some data even broke the pattern of effective wave transmission rate 
(0 <   < 1), driven by the case of high relative freeboard. Takayama’s 
formula can mainly use for the submerged structure under still water 
level, and the empirical formula are composed of the linear regression 
type of the 1st order of polynomial equation, which cause the low 
accuracy.

Among four different empirical formulas, Goda and Ahrens (2008) 
revealed the estimated wave transmission rate that has an MSE of 
0.008 and an   value of 0.851, which shows the highest accuracy 
because suggested formula used 6 types of dimensionless numbers for 
converted effective crest width () under various conditions (Fig. 
6(b)). Fig. 6(c) shows the estimated wave transmission rate of LCS 
suggested by Van der Meer et al. (2005). The effective values of wave 
transmission rate are obtained in the range of 0.075 <   < 0.8 in the 
empirical formula. They provided an MSE of 0.009 and an   value of 
0.81, which generally represent overestimated results compared to 
experimental results. In the same manner, the results, obtained from 
Carabrese et al. (2003) provides the overestimated prediction at the 
point of wave transmission rate compared to the experimental results, 
as shown in Fig. 6(d), suggesting inappropriate model for our study.

4.2 Prediction Accuracy Analysis Using ANN
Figs. 7 and 8 show the wave transmission rate of the training and test 

data of 206 sets using a deep neural network under the optimum 
condition of 29 hidden neurons with 2 hidden layers. In the figures, the 
horizontal axis reveals the experimental values, and the vertical axis 
shows the distribution of predicted values. In the prediction results of 
the training dataset, index of agreement () was 0.997, scatter index 
(SI) was 0.086, and R2 was 0.988. For the test dataset, MSE was 
1.3×10-3, I was 0.995, SI was 0.078, and R2 was 0.979, suggesting that 
the predictive model for the wave transmission rate demonstrated 
excellent performance. Based on the obtained analysis, it is worth 
noting that the performance prediction method using an artificial 
neural network model can be suitable for various fields in coastal 
engineering, unlike the broadly used empirical formula. Table 5 shows 
the statistical model performance results based on the application of 
popular empirical formula compared to deep neural network, which 
suggests that the ANN model provides a more accurate prediction 
performance compared to the empirical formula. In addition, the ANN 
model is not required to set up the effective range of the wave 
transmission rate or apply the special formula dependent on the input 
variables whereas the empirical formula can be used under the 
recommended effective range in order to diminish the uncertainty. 
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Thus, the ANN model can provide high prediction accuracy with 
cost-effective reliability when only seven dimensionless input 
variables are used.

4.3 Sensitivity Analysis
To estimate the independent importance of the input variable of the 

model constructed using ANN calculations and to determine the 
important input variables, we performed a sensitivity analysis of the 
effect on the prediction of the wave transmission rate through model 
application using the same training set. Table 6 shows the sensitivity 
analysis results of the wave transmission rate for each input variable. 
To estimate the independent importance of the input variable of the 
model constructed using ANN calculations and to determine the 

important input variables, we performed sensitivity analysis of the 
effect on the prediction of the wave transmission rate through model 
application using the same training set. The analysis reveals that the 
model accuracy for the relative freeboard ( ) had an MSE of 
146.7×10-3 and an R2 value of 0.153, which was found to be the most 
important parameter for the wave attenuation and wave transmission 
rate of the structure. This finding is attributed to the reduction of 
transmitted wave height along with strong breaking wave, and an 
increased reflected wave in front of the structure as the crown depth is 
reduced. Figs. 9 (a) and (d) are the distributions of the experimental 
and predicted values, respectively, when factors related to the relative 
freeboard and ratio of the crest height to the water depth are excluded, 
which showed that the predicted value using the model overestimated 
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Fig. 6 Comparison of wave transmission formulas with experimental data: (a) Takayama et al. (1985); (b) Goda and Arhens. (2008); (c)

Van der Meer et al. (2005); (d) Calabrese et al. (2003) 

Table 5 Statistical parameters of the results

Methods MSE I SI 

Takayama et al. (1985) 21×10-3 0.846 0.263 0.500
Goda and Arhens (2008) 8×10-3 0.962 0.172 0.851
Van der Meer (2005) 9×10-3 0.974 0.221 0.810
Calabrese et al. (2003) 9×10-3 0.952 0.215 0.792
ANN model 1.3×10-3 0.995 0.078 0.979

Note: MSE = Mean square error, I = Index of agreement, SI = Scatter index
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the experimental value and the error increased significantly. As the 
relative freeboard factor is the dominant factor in wave control, a large 
error occurred when the two factors were not considered. 

Most of empirical formular(van der Meer, 2005; Goda, 2008; 
Calabrese, 2003; Takayama, 1985) have suggested r elative freeboard 
(), ratio of the crest width to wave length ( ) and surf 
similarity parameter () as impact factors for wave attenuation 
coefficient. However, sensitivity to the wave breaking similarity 
coefficient reflecting the conditions for the front slope and wave slope 

of the structure was MSE 22.4×10-3,   0.703, which was less 
sensitive to wave control than other variables. The standard deviation 
of the input variable is large, and the interpretation of various 
conditions of the crest width to wave length is insufficient because 
wave transmission rate was performed for two widths of 0.3 and 1.0, in 
the input variable. In all experiments and model implementation, the 
variable control is considered one of the important factors for 
obtaining reliable results. Therefore, in future research, we plan to 
develop a model with high predictive performance through the 
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Fig. 7 Comparison of transmission rate between experiment and 

prediction (training data)
Fig. 8 Comparison of transmission rate between experiment and 

prediction (test data)

Parameter
Performance measures

MSE I SI 

  146.7×10-3 0.589 0.795 0.153
  9.7×10-3 0.962 0.205 0.864
  22.4×10-3 0.925 0.311 0.703
  27.0×10-3 0.896 0.341 0.684
  78.3×10-3 0.665 0.581 0.343
 

 40.1×10-3 0.832 0.416 0.563
 

 45.4×10-3 0.818 0.443 0.572
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Fig. 9 Sensitivity analysis of input variables: (a)   variables of sensitivity; (b)   variables of sensitivity; (c)  variables of 

sensitivity; (d)   variables of sensitivity; (e)  variables of sensitivity; (f)  variables of sensitivity; (g) 

variables of sensitivity

Table 6 Sensitivity analysis of ANN model



322 Taeyoon Kim et al.

development of various machine learning-based predictive models 
using refined input variables.

4.4 Analysis of Accuracy Metric According to Input Variables 
Combination

In this study, we applied input variables composed of seven 

dimensionless numbers ( = {
 


 

 


 

  
 




  


  


   

 }) and analyzed the effect on model 

performance when some input variables or data were not reflected 
through various combinations. The results of the predicted values and 
the experimental values using eight combinations are shown in Fig. 10, 
and model performance results according to the eight combinations of 
input variables are shown in Table 7. Combination 1 shows the model 
performance results when the seven non-dimensional input variables 
are applied, indicating highest accuracy with an MSE of 1.3×10-3 and 
  of 0.979. 

Combination 7, applying three input variables (  


  
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Fig. 9 Sensitivity analysis of input variables: (a)   variables of sensitivity; (b)   variables of sensitivity; (c)  variables of 

sensitivity; (d)   variables of sensitivity; (e)  variables of sensitivity; (f) 
 variables of sensitivity; (g) 
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  


  

 ), showed the lowest accuracy with an MSE of 

38.7×10-3 and   of 0.401. In addition, combination 8 with same 

variables applied (
 


 

 


 

 

 ) showed relatively 

good accuracy, with an MSE of 6.7×10-3, and   of 0.896. The 
analysis results from various combinations suggest that the accuracy 
does not increase linearly even if the number of input variables 
increases.

Furthermore, accurate prediction using neural network model 
requires reducing training time and improving the simplicity of the 
model. An ideal model is one that describes the problem in the easiest 
and simplest way using the fewest variables. Therefore, it is important 
to identify variables that save modeling time and space.

Accordingly, combination 4 using four input variables produced a 
result with relatively high accuracy, with an MSE of 2.5×10-3 and   
of 0.961. In terms of the model time cost, combination 4 offers a good 
alternative for the model.

Combinations
Performance measures

MSE
I SI R2

test train test train test train
1: 

 
 

 
 

 
  1.3×10-3 0.995 0.997 0.078 0.086 0.979 0.988

2: 
 

 
 

 
  1.9×10-3 0.992 0.994 0.095 0.080 0.970 0.975

3:      2.7×10-3 0.989 0.99 0.112 0.100 0.958 0.961

4. 
 

 
 

  2.2×10-3 0.991 0.994 0.100 0.077 0.966 0.977

5. 
 

 
  2.5×10-3 0.990 0.994 0.107 0.076 0.961 0.977

6.     37.4×10-3 0.807 0.919 0.414 0.265 0.424 0.632

7. 
 

  38.7×10-3 0.791 0.902 0.422 0.285 0.401 0.552

8. 
 

  6.7×10-3 0.973 0.977 0.175 0.150 0.896 0.906
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Fig. 10 Influence of number of input; variables: (a) Combination 1; (b) Combination 2; (c) Combination 3; (d) Combination 4; (f) 

Combination 6; (g) Combination 7; (h) Combination 8

Table 7 Performance measures for analysis of different input variable combinations
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4. Conclusion

In this study, we built a deep neural network model to predict the 
wave transmission rate of low crested structures using TensorFLow, 
an open source platform. To construct the model, we utilized the 
hydraulic model experiment data from Seelig (1980), Daemrich and 
kahle (1985), van der Meer (1988), Daemen (1991) for training (70%) 
and prediction (30%). These neural network models show reliable 
prediction performance and are expected to be widely used in practical 
applications in the field of coastal engineering.

The sensitivity analysis using the neural network model found that 
importance of independent variable input for relative freeboard 
() and ratio of the crest height to the water depth () was 
large, and the lowest performance appeared when the two factors were 
excluded from training. In short, the crest depth was found to be the 
most dominant factor influencing the wave height attenuation in the 
hydraulic behavior around the low crested structure.

The proposed model showed relatively high accuracy in predicting 
the wave transmission coefficient of the low crested structure 
according to various combinations of input variables, with 
combination 5 showing 0.961 despite using a small number of input 
variables. In terms of the model time cost, a method using combination 
5 offers a good alternative.

The prediction results were analyzed using a comparative review of 

the results from the existing empirical formula and statistical 
indicators. The result of wave transmission rate of the trained deep 
neural network model showed very good prediction accuracy, with 
1.3×10-3 of MSE, 0.995 of , 0.078 of SI, and 0.979 of  , the 
prediction performance is highly improved compared to existing 
empirical results. Engineers and scientists can use the suggested model 
as a design tool to predict the wave transmission coefficient behind the 
low crested structure.
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