• Title/Summary/Keyword: Range Measurement

Search Result 4,359, Processing Time 0.034 seconds

Mechanism Design of the Micro Weighing Device by Using Null Balance Method (영위법을 이용한 미소중량 측정 장치의 기구설계)

  • Choi, In-Mook;Woo, Sam-Yong;Kim, Boo-Shik;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.183-193
    • /
    • 2003
  • Micro-weighing device by using null balance method is being essential part in fields of high-technology industries such as precision semiconductor industry, precision chemistry, biotechnology and genetics etc. Also, requirements for high resolution and for large measurement range increase more and more. The performance of the micro-weighing device can be determined by the mechanism design and analysis. The analytical design method has been proposed for the performance improvement such as resolution, measurement range and fast response. The 2-stage displacement amplification is designed to overcome the limit of conventional force transmitting lever. The parallel spring is designed for the measurement result independent of the input force position variation. Also, the natural frequency of mechanism is analyzed for the fast response. After each analysis, optimal design has been carried out. To verify the analysis and design result, characteristics experiments had been carried out after construction. Finally, the system had been controlled.

Design and Implementation of ELF Digital Magnetic Fields Meter (극저주파 디지털 자계 측정기의 설계 및 구현)

  • Im, Jae-Yoo;Hwang, Jung-Hwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • In this paper, we present that design and implementation of digital extreme-low-frequency (ELF) magnetic meter including wireless monitoring feature. In our lifetime, it is necessary to study how much magnetic field effects to human body. In this paper, we use 3-axis coil-type magnetic sensor, magnetic measurement range is 0.03~10uT and frequency range is 40~180Hz. As magnetic sensor characteristic, frequency loss is occurred that compensated using digital equalize based on DSP processor. Measurement value can be monitored on PC through Wifi communication and measurement error is observed within 6%.

Concurrent Validity, Inter-Tester and Intra-Tester Reliability of Goniometric Measurement of Active Elbow Range of Motion Using 4 Different Types of Measuring Instruments (주관절 가동범위 측정법에 대한 동시타당도와 신뢰도)

  • Current, Marion E.;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 1995
  • The purpose of this study was to assess the concurrent validity and reliability of goniometric measurement of joint motion. Subjects were 40 healthy university students. Measurements were performed by 4 inexperienced physical therapy students. Four different instruments were used and three readings were taken with each instrument in random order making a total of 12 readings for flexion of the right elbow of each subject. Goniometers used were 1. universal 2. fluid-based goniometer/inclinometer 3. digital LCD goniometer 4. electronic goniometer/torsiometer. The results were as follows: Concurrent validity was highest (r= .94) with the universal and digital LCD tools. Interrater reliability (Pearson Product Moment Correlation) was good for each tool. Interrater reliability calculated by ICC(2,1) was highest (.96) with the tensiometer and lowest (.78) with the digital LCD goniometer. Intrarater reliability calculated by ICC was excellent (${\geq}.90$) for all instruments. These results show that concurrent validity, intrarater and interrater reliability are very good in the used of all four types of goniometers/inclinometer/tensiometer, even with inexperienced raters. These results confirm the almost universal reliance on hand held goniometers for joint measurement by physical therapists as being a reliable practice. Further research should be done clinically with actual patients.

  • PDF

Implementation of an Interrogator for the Operationand Measurement of Fiber Bragg Grating Multiplexing Sensor Probes (FBG 다중화 센서 탐촉자 구동 및 측정을 위한 인터로게이터 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • This research focuses on the development of an interrogator that operates and measures fiber Bragg grating(FBG) multiplexing sensor probes for accurate-measurement of the blade deflection in a wind power generator. We designed and fabricated an optical source and spectrum module for the interrogator. Additionally, we verified the wavelength repeatability within 0.001 nm and the wavelength stability within 1 pm of the optical source, and we experimentally determined that the wavelength scanning range was about 44.4 nm. The FBG sensor with 2 nm resolution can be extended to a performance-efficient system that measures more than 20 sensors. The implemented interrogator has 0.141 nm wavelength variations corresponding to an ambient temperature range of $0^{\circ}C$ to $70^{\circ}C$. The measurement error can be easily reduced by employing a temperature compensation algorithm. In this study, we quantitatively confirmed the accuracy and operating stability of the interrogator.

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

Measurement of Cloud Velocity and Altitude Using Lidar's Range Detection and Digital Image Correlation

  • Park, Nak-Gyu;Baik, Sung-Hoon;Park, Seung-Kyu;Kim, Dong-Lyul;Kim, Duk-Hyeon;Choi, In-Young
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.605-610
    • /
    • 2014
  • Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements because there is no Doppler effect if the clouds move in the perpendicular direction to the laser beam path of Doppler lidar. In this paper, we present a method for the measurement of cloud velocity using lidar's range detection and DIC (Digital Image Correlation) system to overcome the disadvantage of Doppler lidar. The lidar system acquires the distance to the cloud, and the cloud images are tracked using the developed fast correlation algorithm of DIC. We acquired the velocities of clouds using the calculated distance and DIC algorithm. The measurement values had a linear distribution.

Experimental and Simulated Efficiency of a HPGe Detector in the Energy Range of $0.06{\sim}11$ MeV

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.234-242
    • /
    • 2003
  • The full energy peak efficiency of a hyper pure germanium (HPGe) detector was calibrated in a wide energy range from 0.06 to 11 MeV. Both the experimental technique and the Monte Carlo method were used for the efficiency calibration. The measurement was performed using the standard radioisotopes in the low energy region of $60{\sim}1408$ keV, which was further extended up to 11 MeV by using the $^{14}N(n,r)\;and\;^{35}Cl(n,r)$ reactions. The GEANT Monte Carlo code was used for efficiency calculation. The calculated efficiency had the same dependency on the r-ray energy with the measurement, and the discrepancy between the calculation and the measurement was minimized by fine-tuning of the detector geometry. From the calculated result, the efficiency curve of the HPGe detector was reliably determined particularly in the high energy region above several MeV, where the number of measured efficiency points is relatively small despite the wide energy region. The calculated efficiency agreed with the measurement within about $7\%$. In addition to the efficiency calculation, the origin of the local minimum near 600 keV on the efficiency curve was analyzed as a general characteristics of a HPGe detector.

MSBS-SPR Integrated System Allowing Wider Controllable Range for Effective Wind Tunnel Test

  • Sung, Yeol-Hun;Lee, Dong-Kyu;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.414-424
    • /
    • 2017
  • This paper introduces an experimental device which can measure accurate aerodynamic forces without support interference in wide experimental region for wind tunnel test of micro aerial vehicles (MAVs). A stereo pattern recognition (SPR) method was introduced to a magnetic suspension and balance system (MSBS), which can eliminate support interference by levitating the experimental model, to establish wider experimental region; thereby MSBS-SPR integrated system was developed. The SPR method is non-contact, highly accurate three-dimensional position measurement method providing wide measurement range. To evaluate the system performance, a series of performance evaluations including SPR system measurement accuracy and 6 degrees of freedom (DOFs) position/attitude control of the MAV model were conducted. This newly developed system could control the MAV model rapidly and accurately within almost 60mm for translational DOFs and 40deg for rotational DOFs inside of $300{\times}300mm$ test section. In addition, a static wind tunnel test was conducted to verify the aerodynamic force measurement capability. It turned out that this system could accurately measure the aerodynamic forces in low Reynolds number, even for the weak forces which were hard to measure using typical balance system, without making any mechanical contact with the MAV model.

Approach for Microwave Frequency Measurement Based on a Single Photonic Chip Combined with a Phase Modulator and Microring Resonator

  • Zhang, Jiahong;Zhu, Chuyi;Yang, Xiumei;Li, Yingna;Zhao, Zhengang;Li, Chuan
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.576-581
    • /
    • 2018
  • A new approach for identification of a microwave frequency using an integrated optical waveguide chip, combined with a phase modulator (PM) and two microring resonators (MRRs), is proposed, theoretically deduced, and verified. By wavelength tuning to set the PM under the condition of a double side band (DSB), the measurement range can be started from the dc component, and the measurement range and response slope can be adjusted by designing the radius and transmission coefficient of the MRR. Simulations reveal that the amplitude comparison function (ACF) has a monotonic relationship from dc to 32.5 GHz, with a response slope of 5.15 dB under conditions of DSB modulation, when the radius values, transmission coefficients, and the loss factors are designed respectively as $R_1=400{\mu}m$, $R_2=600{\mu}m$, $t_1=t_2=0.63$, and ${\gamma}_1={\gamma}_2=0.66$. Theoretical calculations and simulation results both indicate that this new approach has the potential to be used for measuring microwave frequencies, with the advantages of compact structure and superior reconfigurability.