• Title/Summary/Keyword: Range Finder

Search Result 181, Processing Time 0.025 seconds

Development of range finder using long wavelength laser (장파장 레이저를 이용한 거리 측정기 개발)

  • 유병헌;신보성;장원석;김재구;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.938-941
    • /
    • 2003
  • As the application area of range finder initially developed for military purpose has been extended, the necessity of precision measurement for long distance and its miniaturization is being presented. Recently, LRF(Laser Range Finder) is widely used because it shows more accurate results of range finding. However, most of LRFs use laser source which have wavelength ranges harmful to the human eyes. In this study, we developed the LRF using OPO(Optical Parametric Oscillator) which can stretch laser wavelength to safe region and realized more compact one using solid state laser

  • PDF

The Lens Design Technique of High Precision Laser Range Finder (고정밀 레이저 거리계용 렌즈 설계 기법)

  • Bae, Young-Chul;Cho, Eui-Joo;Lee, Hyen-Jae;Kim, Sung-Hyen;Kim, Hyeon-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • A lens which is one of cores for the high precision laser range finder is utilized to compute the distance by measuring the phase displacement. In order to measure the phase displacement, we transmit the optical signal from the laser diode to a target and receive the reflected laser light from the target. In this paper, we propose new lens design technique to solve the problem due to the inconsistent curvature of the lens, which consistently collects optical signals and performs the transmission and reception of the optical data, and test the implementation of the laser range finder based on the proposed technique. Since the proposed laser range finder has low error rate comparing to the conventional techniques, it may be apply to the high precision distance measurement.

  • PDF

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

The Study of DSP Algorithm for $\textrm{CO}_2$ Laser Range Finder (DSP 알고리즘을 사용한 $\textrm{CO}_2$ 레이저거리 측정기의 설계에 관한 연구)

  • 김영대;김도종;강윤식;김점수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1214-1219
    • /
    • 1991
  • Recently, LASER is used in many industrial, military applications. In this study, digital filtering, correlation, differentiation techniques for CO$_{2}$ LASER Range Finder System are introduced. This LASER Range Finder System can be realized by DSP algorithm suggested in this paper and high speed digital signal processors.

  • PDF

The Study of Development by Intelligent Scan Laser Range Finder Supervisor System (지능형Scan Laser Range Finder 감시시스템 개발에 관한 연구)

  • Kim, Su-Kyum;Kim, Jong-Kyum
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.411-414
    • /
    • 2008
  • 해상사고로 인한 송전선로의 보호를 위해 Scan Laser Range Finder를 사용하여 해상에서의 일정한 높이에서 수평으로 레이저빔을 조사한 후 높이 기준을 넘는 선박을 검지하여 좌표와 속도를 측정하여 경보방송 및 무선 통신으로 회항을 유도하여 송전선을 감시 및 보호하는 기술개발로 산업 현장에서의 적응력을 높이는데 기여할수 있을것으로 보인다.

  • PDF

An obstacle avoidance system of an unmanned aerial vehicle using a laser range finder

  • Kim, Hyun;Miwa, Masafumi;Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.737-742
    • /
    • 2013
  • Recently, unmanned aircrafts for safe measurement in hazardous locations have been developed. In a method of operation of unmanned aircraft vehicles (UAV), there are two methods of manual control and automatic control. Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. Obstacle avoidance is one of the most challenging tasks which the UAV has to perform with high level of accuracy. In this study, we used a laser range finder as an obstacle detector in automatic navigation of unmanned aircraft to patrol the destination automatically. We proposed a system to avoid obstacles automatically by measuring the angle and distance of the obstacle using the laser range finder.

alibration of Infra-red Range Finder PBS-03JN Using Piecewise Linear Function Based on 2-D Grid Error (2차원 격자 오차 데이터 기반의 선형 보정 함수들을 이용한 적외선 레인지 파인더 PBS-03JN의 보정)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.922-931
    • /
    • 2011
  • An efficient calibration algorithm for mobile robot localization using infrared range finder is proposed. A calibration is important to guarantee the performance of other algorithms which use sensor data because it is pre-process. We experimentally found that the infrared range finder PBS-03JN has error characteristics depending on both distance and scan angle. After obtaining 2-D grid error characteristic data on distance and scan angle, we proposed a simple and efficient calibration algorithm with a 2-D piecewise linear function set. The performance of our proposed calibration algorithm is verified by experiments and simulation.

자율주행 로봇을 위한 Laser Range Finder

  • 차영엽;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.266-270
    • /
    • 1992
  • In this study an active vision system using a laser range finder is proposed for the navigation of a mobile robot in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates around the robot by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. A high speed image processing algorithm is proposed for the real-time navigation of the mobile robot. Through experiments it is proved that the accurate and real-time recognition of environment is able to be realized using the proposed laser range finder.

Infrard range finder designed for target moving at medium speed and its application to lens-position control of autofocus camera

  • Tada, Ken-Ichi;Shinohara, Shigenobu;Yoshida, Hirofumi;Ikeda, Hiroaki;Saitoh, Yasuhiro;Nishide, Ken-Ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.394-398
    • /
    • 1992
  • The measurable speed range of the self-mixing type semiconductor laser range finder has been greatly improved by employing a new processing circuit. Using this range finder as an external finder of a single lens reflex (SLR) autofocus (AF) camera, some clear photographs of an object moving at a medium speed of 20 mm/s is obtained.

  • PDF

Fast Local Indoor Map Building Using a 2D Laser Range Finder (2차원 레이저 레이진 파이더를 이용한 빠른 로컬 실내 지도 제작)

  • Choi, Ung;Koh, Nak-Yong;Choi, Jeong-Sang
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.99-104
    • /
    • 1999
  • This paper proposes an efficient method constructing a local map using the data of a scanning laser range finder. A laser range finder yields distance data of polar form, that is, distance data corresponding to every scanning directions. So, the data consists of directional angle and distance. We propose a new method to find a line fitting with a set of such data. The method uses Log-Hough Transformation. Usually, map building from these data requires some transformations between different coordinate systems. The new method alleviates such complication. Also, the method simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform method. To show the efficiency of the proposed method, it is applied to find a local map using the data from a laser range finder PLS(Proximity Laser Scanner, made by SICK).

  • PDF